	Utech
Name:	
Roll No.:	To Change Cay Exercising and Experient
Invigilator's Signature :	

CS/M.TECH(ECE)/SEM-2/MCE-203/2010 2010

ERROR CONTROL CODING THEORY

Time Allotted: 3 Hours Full Marks: 70

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

Answer Question No. 1 and any 4 from the rest.

1. Select the correct answers and give one line justifications :

 $7 \times 2 = 14$

- a) The random error correction capability of a (7, 4) linear Hamming code is
 - i) 7

ii) 4

iii) 3

- iv) 1.
- b) If in a (15, 7) linear block code, the minimum weight of any valid code word is 5, the minimum distance between any two of them will be
 - i) 5

- ii) 15/5
- iii) 7 × 5
- iv) 15 7.

30073 (M.TECH)

[Turn over

CS/M.TECH(ECE)/SEM-2/MCE-203/2010

- i) (15×8)
- ii) (7×15)
- iii) (15×7)
- iv) (7×8) .

d) The constraint length of a convolutional encoder made of 5 shift register is

i) 5

ii) 7

iii) 6

iv) 4.

e) In a convolutional encoder, the fractional rate loss for a 100 bit input message in comparison to a 50 bit input message will be almost

- i) 2 times
- ii) 1/2 times
- iii) 2^2 times
- iv) same.

f) The generator polynomial g(x) of a (7, 4) cyclic code is a factor of

- i) $x^7 + 1$
- ii) $x^4 + 1$
- iii) $x^3 + 1$
- iv) x^7 .

g) When a 5 bit message is given to the input of a (3, 3, 1) convolutional encoder, length of the coded output is

- i) 24 bits
- ii) 25 bits
- iii) 15 bits
- iv) 45 bits.

30073 (M.TECH)

- 2. a) Derive the elements of GF (2^4) from the primitive polynomial $P(x) = x^4 + x^3 + 1$ and show 'power representation;, 'polynomial representation' and 'n-tupple representation' of the elements.
 - b) Show that $\alpha^{\,5}$ is not a primitive element of the above group.
 - c) What do you understand by conjugate roots?
 - d) Find the parity matrix H for a double error correcting BCH code based on the above P(X).
- 3. a) Explain the structural relation between generator matrix and parity check matrix of a linear block code. 5
 - b) Hence determine the parity check matrix from the generator matrix given below:

$$G = \begin{bmatrix} 1 & 1 & 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 & 1 & 0 & 0 \\ 1 & 1 & 1 & 0 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 & 0 & 0 & 1 \end{bmatrix}$$

- c) Find the code word v when the message u = (1111). 3
- d) How is the code word related to the parity check matrix? Prove the relation for the code word v found above.
- 4. a) Explain the principle of error detection and correction in linear block codes.
 - b) The generator matrix of a linear block code is given as,

$$G = \begin{bmatrix} 1 & 1 & 1 & 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 1 & 0 \\ 1 & 1 & 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$

Design an error detection and correction circuit explaining the important design steps.

CS/M.TECH(ECE)/SEM-2/MCE-203/2010

- b) Give the parity matrix H of a Hamming code for m = 3.
- c) Explain what are BCH codes.
- d) Show that a single error correcting BCH code is in fact a Hamming code.

3

- 6. a) Draw the syndrome circuit for a (7, 4) cyclic code generated by $g(X) = 1 + x^2 + x^3$ and explain it's operation when the erroneous received vector r = (0101001).
 - b) Draw and explain the Megitt detector for the same cyclic code and determine the corrected vector for the same erroneous received vector *r*.

7.

Dia.

- a) Construct the state diagramme for above convolutional encoder.
- b) If the input message is u = (10101), determine the output v by tracing it's path through the state diagramme.
- c) Illustrate with an example how a primitive polynomial can be used as the generator polynomial to produce a maximum length PN sequence using linear feedback shift registers.