Name :	
Roll No. :	A Description of Exchant
Invigilator's Signature :	

CS/M.Tech (ECE)/SEM-2/MVLSI-202/2013 2013

DIGITAL SIGNAL PROCESSING & APPLICATIONS

Time Allotted : 3 Hours

Full Marks : 70

The figures in the margin indicate full marks. Candidates are required to give their answers in their own words as far as practicable.

Answer any *five* questions taking at least *one* from each Group.

GROUP – A

1. Consider the system described by the following difference equation :

y(n) - y(n-1) + 0.25 y(n-2) = x(n) - 0.25 x(n-1)

- a) Realize the system using adder, subtractor and delay units. If the adder/subtractor and multiplier units need t_a and t_m units respectively then find out the minimum sampling period. 4 + 2
- b) Find out the unit sample response of the system. 4
- c) Find out the response of the system to $x(n) = (0.25)^n U(n).$ 4

30454 (M.Tech) [Turn over

CS/M.Tech (ECE)/SEM-2/MVLSI-202/2013

- 2. Consider the CT signal $x(t) = \cos(20\pi t) + \cos(100\pi t)$
 - a) What are the corresponding "digital" frequencies $\omega 1$ and $\omega 2$ (in radians/sample)? What should be the minimum sampling frequency? 3+3
 - b) Write expression for the equivalent digital signal *x* (*n*). 2
 - c) Find out the *Z*-transform of

i)
$$\cos\left(w_0^n\right) U(n)$$

- ii) *U*(*n*). 6
- a) Determine whether or not the signals below are periodic or not. For each signal that is periodic, find out the fundamental period.

i)
$$x(n) = \cos(.125 \pi n)$$

- ii) $x(n) = \sin(\pi + 0.02 n)$. 2×2
- b) Express the signal *x* (*n*) as a sum of scaled and shifted unit steps : 4

 $x(n) = \{1 \text{ for } n = 0, 2 \text{ for } n = 1, 3 \text{ for } n = 2, 0 \text{ else} \}$

c) Consider a signal which is pulse having sample on and off periods, time period (T) is 20 msec and the peak value is 5 unit. Find out the *d.c.* value and 3rd harmonics of the signal. 3×2

4. a) A system is characterized by the difference equation y(n) = y(n-1) - y(n-2) + 0.5x(n) + 0.5x(n-1)

Find the response of the system to the input $x(n) = (0.5)^n u$ (*n*) with initial condition y(-1) = 0.75 and y(-2) = 0.25.

- b) Consider a discrete sequence $x(n) = \{4, 2, 4, 4, 2, 4, 4, 2\}$ for $n = 0, 1, 2, \dots$. Find out the Fourier transform X(k) for k = 3.
- c) Find out the *Z*-transform of the above sequence. 4
- 5. a) Realize the equivalent digital (using adder, multiplier, delay etc.) for the LSI system described by the difference equation

$$y(n) = y(n-1) - y(n-2) + 0.5x(n) + 0.5x(n-1)$$
 5

- b) What is bi-linear transformation ? Prove the relation between S and Z. 1 + 4
- c) Transfer function of a continuous time system is given by $H(S) = 1/S^2$. Derive the equivalent digital circuit. 4
- 6. A normalized Butterworth filter needs to be designed with the following specifications :

Passband edge = 0.7 rad/sec, stopband edge = 0.2 rad/sec, maximum passband loss = 0.5 dB, Minimum stop band loss = 30 dB

a)	Find out the minimum filter order.	6
b)	Find out the transfer function $H(S)$ of the filter.	6
c)	Find out $H(Z)$ of the filter.	2

30454 (M.Tech)

3

[Turn over

CS/M.Tech (ECE)/SEM-2/MVLSI-202/2013

of a typical DSP

6

- 7. a) What are the typical features Processor ?
 - b) Explain clearly the following :
 - i) Circular addressing scheme
 - ii) Zero overhead loop
 - iii) Single cycle execution
 - iv) Harvard architecture.
 - c) Give the block diagram of ADSP2181 and indicate the salient features. 6
- 8. a) What are the possible different platforms to implement DSP algorithms and discuss their advantages and drawbacks. 3+3

GROUP – C

- b) What is Look Up Table (LUT) ? How a Boolean expression can be implemented using LUT ? Explain with an example. 2+2
- c) With a block diagram explain the operation of FPGA. 4
- 9. a) Derive the mathematical expression to arrive at the FFT algorithm for the Discrete Fourier Transform (DFT). Give the structure of a 8-point FFT computation. 3 + 3
 - b) What is the drawback of Fourier Transform ? Explain with an example. What do you mean by "Short term Fourier Transform" ? 1 + 1
 - c) Explain clearly the principle of "Wavelet transform" and discuss its advantage over the "Short term Fourier Transform".