Name :	
Roll No. :	California V I among Red Later
Invigilator's Signature :	

CS/M.Tech (ECE)/SEM-2/MEC-201/2010 2010

ADVANCED DIGITAL SIGNAL PROCESSING

Time Allotted : 3 Hours

Full Marks : 70

The figures in the margin indicate full marks. Candidates are required to give their answers in their own words as far as practicable.

GROUP – A

1. Answer any *five* of the following :

 $5 \times 2 = 10$

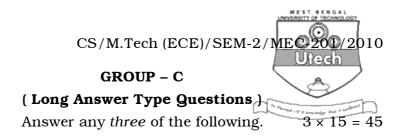
- i) Prove the digital systems in $y(n) = x(n^2)$ is
 - a) linear and causal
 - b) linear and non-causal
 - c) non-linear and causal
 - d) non-linear and non-causal.
- ii) Find a digital filter is said to be IIR & explain it
 - a) if present o/p depends on previous o/p only
 - b) if system function H(Z) has one or more non-zero denominator coefficients
 - c) if all poles lie outside the unit circle
 - d) if system function has only zeros.

30041 (M.TECH)

[Turn over

CS/M.Tech (ECE)/SEM-2/MEC-201/2010

- iii) Describe infinite memory system from DSP point of view.
- iv) Define energy signal & power signal.
- v) Mention the basic difference between continuous signal and discrete signal.
- vi) Write down about basic application of correlation of signals.


GROUP – B

(Short Answer Type Questions)

Answer any *three* of the following. $3 \times 5 = 15$

- 2. Show that an absolutely summable sequence having finite energy sequence may not be absolutely summable.
- 3. State Parseval's theorem for DT aperiodic signals.
- 4. Write down the basic difference between DFT & DTFT. State Wiener-Khintchine theorem.
- 5. Determine the average power and the energy of the following sequences :
 - i) $x(n) = A_0 e^{jwn}$
 - ii) x(n) = u(n).
- 6. Determine the autocorrelation function and power spectral density (psd) for the following signal : $x(t) = A_c \cos (2\pi f_c t A_c + \phi_o)$ where A_c and f_c are constants, ϕ_o is a random variable which is uniformly distributed over the interval ($-\pi$, π).

30041 (M.TECH)

7. Consider the following length 7 sequences defined for $-3 \le n \le 3 x(n) = \{ 3 -2 \ 0 \ 1 \ 4 \ 5 \ 2 \} ; y(n) = \{ 0 \ 7 \ 1 \ -3 \ 4 \ 9 \ -2 \};$ w(n) = $\{ -5 \ 4 \ 3 \ 6 \ -5 \ 0 \ 1 \}$

Evaluate cross-correlation sequence r_{xy} (l) between x(n) and y(n) and the cross-correlation sequence r_{xw} (l) between the sequences x(n) and w(n). $2 \times 7\frac{1}{2}$

- 8. a) Determine the value of the constant *k* that minimizes the mean square error E ($[X-k]^2$), and then find the minimum value of the mean square error. Given $k = m_x$, show by illustration. $7\frac{1}{2}$
 - b) Find DFT of following sequence $x(n) = \{0, 1, 2, 3, 4, 5, 6, 7\}$ using matrix method. $7\frac{1}{2}$
- 9. a) What is the need for Spectral estimation ? How can the energy density spectrum be determined ? What is periodogram ?
 3 × 3
 - b) What are the non-parametric methods of power spectrum estimation ? 3
 - c) Discuss power spectrum estimation using Bartlett method. 3

30041 (M.TECH) 3 [Turn over

CS/M.Tech (ECE)/SEM-2/MEC-201/2010

- 10. a) Write various applications of MDSP (multirate DSP) & its advantages.
 - b) What do you mean by decimation ? Describe the sampling rate conversion by a rational (I/D).Describe sampling theorem. 3×3

11. Write short notes on any *three* of the following " 3×5

- a) Recursive filter.
- b) Non-recursive filter.
- c) Direct form-II structure second order filter.
- d) Adaptive filter.
- e) Interpolation and decimation.