40367

|                                                                  |                                                                |    |                  |               | ( Oligan            |  |
|------------------------------------------------------------------|----------------------------------------------------------------|----|------------------|---------------|---------------------|--|
| Nan                                                              | 1e :                                                           |    |                  | • • • • • • • |                     |  |
| Roll No.:                                                        |                                                                |    |                  |               |                     |  |
| Invigilator's Signature :                                        |                                                                |    |                  |               |                     |  |
| CS/M.TECH(ECE-VLSI)/SEM-1/MVLSI-104/2012-13                      |                                                                |    |                  |               |                     |  |
| 2012                                                             |                                                                |    |                  |               |                     |  |
| MICROELECTRONICS TECHNOLOGY & I.C. FABRICATION                   |                                                                |    |                  |               |                     |  |
| Time Allotted: 3 Hours                                           |                                                                |    |                  |               | Full Marks : 70     |  |
| The figures in the margin indicate full marks.                   |                                                                |    |                  |               |                     |  |
| Candidates are required to give their answers in their own words |                                                                |    |                  |               |                     |  |
| as far as practicable.                                           |                                                                |    |                  |               |                     |  |
| GROUP – A                                                        |                                                                |    |                  |               |                     |  |
| ( Multiple Choice Type Questions )                               |                                                                |    |                  |               |                     |  |
| 1.                                                               |                                                                |    |                  |               |                     |  |
| $10 \times 1 = 10$                                               |                                                                |    |                  |               |                     |  |
|                                                                  | i) In class 100 environment maximum particle size is           |    |                  |               |                     |  |
|                                                                  |                                                                | a) | 0·5 μm           | b)            | 0·05 μm             |  |
|                                                                  |                                                                | c) | 0·15 μm          | d)            | 0·01 μm.            |  |
|                                                                  | ii) Segregation coefficient $K_{_{\rm S}}$ is                  |    |                  |               |                     |  |
|                                                                  |                                                                | a) | $C_s/C_1$        | b)            | $C_s - C_1$         |  |
|                                                                  |                                                                | c) | $C_s \times C_1$ | d)            | $C_s + C_1$ .       |  |
|                                                                  | iii) CH <sub>3</sub> COOH is used in the etching process as    |    |                  |               |                     |  |
|                                                                  |                                                                | a) | lubricant        | b)            | heat controller     |  |
|                                                                  |                                                                | c) | rate controller  | d)            | none of these.      |  |
|                                                                  | iv) For growing $n$ type epitaxial layers suitable dopants are |    |                  |               |                     |  |
|                                                                  |                                                                | a) | $B_2H_6$         | b)            | $PH_3$              |  |
|                                                                  |                                                                | c) | $A_SH_3 & PH_3$  | d)            | $B_2H_6$ & $PH_3$ . |  |

[ Turn over

### CS/M.TECH(ECE-VLSI)/SEM-1/MVLSI-104/2012-13



- v) Deal and Grove model is valid for
  - a)  $350^{\circ}\text{C} < T < 1000^{\circ}\text{C}$
  - b)  $700^{\circ}\text{C} < T < 1300^{\circ}\text{C}$
  - c)  $750^{\circ}\text{C} < T < 1100^{\circ}\text{C}$ .
- vi) The technique of changing the resistivity of Si or Ge is
  - a) etching
- b) LPE
- c) oxidation
- d) diffusion.
- vii) Channeling is occurred in
  - a) crystal growth technique
  - b) edge contouring technique
  - c) ion implementation.
- viii) Desired property of metallization for IC is
  - a) high resistivity
  - b) low resistivity
  - c) very high resistivity.
- ix) Ion dose means total number of ions
  - a) entering the target
  - b) reflected by the target
  - c) absorbed by target.
- x) Faraday cage is used in ion implantation equipment
  - a) to collect the all ions
  - b) to collect the secondary electron
  - c) to oppose the electrons.
- xi) If Si concentration becomes too high in case of epitaxial growth, the growth rate
  - a) reduces
  - b) increases
  - c) remain constant.

## CS/M.TECH(ECE-VLSI)/SEM-1/MVLSI-104/2012-13

- xii) In MBE process the deposited film thickness may be
  - a)  $< 0.05 \, \mu m$
  - b) > 0.05 μm
  - c)  $> 0.5 \mu m$ .

#### GROUP - B

#### (Short Answer Type Questions)

Answer any three of the following

 $3 \times 5 = 15$ 

- 2. What do you mean by clean room? What are the precautions need to be taken to keep the room of fabrication clean?
  - 2 + 3
- 3. What do you mean 'epitaxy'? Why epitaxial layeris required? What are the different methods of epitaxial growth? 1 + 2 + 2
- 4. What are the disadvantages of LPE? What do you mean by autodoping? 2+3
- 5. What are the effects of crystal damage? What do you mean by self annealing? 2 + 3
- 6. Explain Channeling.

#### **GROUP - C**

### (Long Answer Type Questions)

Answer any *three* of the following.  $3 \times 15 = 45$ 

- 7. a) Describe the Czochralski method of crystal growth.
  - b) A boron doped crystal is measured at its seed end with a four-point probe of spacing 1 mm. The V/I reading is  $10~\Omega$ . At this reading doping density of B is  $2\times10^{15}$ . What is the seed end doping and the expected reading at 0.95 fraction solidified ? For boron  $K_0 = 0.8$  at X = 0.

10 + 5

- 8. Describe the MBE technique? Explain the advantages and disadvantages of this technique.
- 9. a) Describe the Thermal oxidation technique using Deal & Grove model and calculate the oxide growth for long and sort oxidation.

40367

# CS/M.TECH(ECE-VLSI)/SEM-1/MVLSI-104/2012-13

- b) Show from the densities and molecular weights of Si and  $SiO_2$  that a layer of silicon of thickness approximately equal to 0.44  $d_0$  is consumed when a  $SiO_2$  layer of thickness  $d_0$  is formed. Use density of  $2.27 \, \mathrm{gm/cm^3}$  for  $SiO_2$  and  $2.33 \, \mathrm{gm/cm^3}$  for Si. 10 + 5
- 10. What do you mean by lithography? What are the different classes of lithography? Describe the photolithography process. 2 + 3 + 10

11. Describe the steps to form a MOS capacitor.

=========

4

40367