
 Name :
 Roll No.
 \qquad
 Invigilator's Signature :
 \qquad
 CS/M.Tech(ECE)/SEM-1/MCE-101/2009-10 2009 ENGINEERING MATHEMATICS \& STATISTICS

The figures in the margin indicate full marks.
Candidates are required to give their answers in their own words as far as practicable.

Answer Question No. 1 is compulsorily and any four of the rest.

1. Answer the following questions with proper justifications:

$$
7 \times 2
$$

a) If $w=f(z)=u(x, y)+i v(x, y)$ be an analytic function is some region of the Z-plane, then show that

$$
{ }^{2} u={ }^{2} v=0
$$

b) Define a pole of order ' n ' at the point Z_{0} of the function $f(z)$. What is $\underset{z \not \varnothing_{z}}{L t} f(z) ?$
c) How does the difference equation

$$
u_{x+2}-(a+b) u_{x+1}+a b u_{x}=0
$$

arise from the relation $U_{x}=A a^{x}+B b^{x}, A$ and B being two arbitrary constants ?
d) Write Newton's formula for forward function of x.
e) Explain the concept of Newton-Raphson method to determine the approximate values of the read roots of an equation $f(x)=0$.
f) Describe the Euler-Langrange equation for extremisation of the functional integration :

$$
\int_{x_{0}}^{x_{1}} F\left(x, y, \frac{\mathrm{~d} y}{\mathrm{~d} x}\right) \mathrm{d} x
$$

stating the necessary conditions to be satisfied.
g) Describe the classical definition of probability and discuss its limitations.
2. a) Prove the necessary conditions for the differentiability of a complex function $f(z)=u(x, y)+i v(x, y)$. State the sufficient conditions also.
b) Determine the analytic function whose real part is

$$
\begin{equation*}
x^{3}-3 x y^{2}+3 x^{2}-3 y^{2}+2 x+1 \tag{7}
\end{equation*}
$$

3. a) Define residue of a function $f(z)$ at its singularity z_{0}. Assuming Laurent's expansion of $f(z)$ in the neighbourhood of z_{0}, find its residue at z_{0}. 7
b) Show that

$$
\int_{c} \frac{\sin \pi z^{2}+\cos \pi z^{2}}{(z-1)^{2}(z-2)} d z=4 \pi(\pi+1) i
$$

whre C is the circle, $|z|=3$.
4. a) Find Newton's formula for forward interpolation in terms of x.

b) From the table given below, calculate $\varphi(1.2)$ correct to two decimal places :

$x:$	0	1	2	3	4
$\varphi(x):$	$1 \cdot 00$	1.50	$2 \cdot 20$	$3 \cdot 10$	$4 \cdot 60$

5. a) Find the third approximate value of the positive root of the equation $x^{3}-2 x+5=0$ correct to four decimal places using the Newton-Raphson method.
b) If $n(A)$ and $n(B)$ denote the number of elements in the finite sets A and B respectively, then prove by using the Venn Diagram that

$$
\begin{equation*}
n(A)+n(B)=n(A \cup B)+n(A \cap B) . \tag{7}
\end{equation*}
$$

6. a) Find the extremal of the function $\int^{4} y \sqrt{1+y^{\prime 2}} \mathrm{~d} x$. $\quad 6$
b) Discuss Lagrange's Multiplier method to solve constrained problems of optimization.
7. a) A committee of 4 people is to be appointed from 3 officers of the production department, 4 officers of the Purchase department, 2 officers of the Sales department and one Chartered accountant. Find the probability of forming the committee in the following manner :
i) There must be one from each category.
ii) It should have at least one from the purchase department.
iii) The chartered accountant must be in the committee.

CS / M.Tech(ECE)/SEM-1/MCE-101/2009-10

b) Find the missing frequencies in the following frequency distribution when it is known that mean $=11 \cdot 09$. 8

Class limits :	$9 \cdot 3-9 \cdot 7$	$9 \cdot 8-10 \cdot 2$	$10 \cdot 3-10 \cdot 7$	$10 \cdot 8-11 \cdot 2$
Frequency :	2	5	f_{3}	f_{4}

$11 \cdot 3-11 \cdot 7$	$11 \cdot 8-12 \cdot 2$	$12 \cdot 3-12 \cdot 7$	$12 \cdot 8-13 \cdot 2$	Total
14	6	3	1	60

8. Write short notes on any three of the following :
a) Couchy's fundamental theorem for a complex function
b) Method of 'Regula Falsi'
c) A finite set having n elements has 2^{n} sub-sets.
d) Axiomatic definition of probability.
