	Utech
Name :	
Roll No.:	To Character (y Exercisely 2nd Explored
Invigilator's Signature :	

CS/M.Tech (ECE)/SEM-1/MVLSI-105-B/2010-11 2010-11

EMBEDDED SYSTEM FUNDAMENTALS

Time Allotted: 3 Hours Full Marks: 70

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

GROUP - A

(Objective Type Questions)

- 1. Answer the following very briefly :
- $10 \times 1 = 10$
- i) What do you mean by Hard Macro and Soft Macro?
- ii) What is Watchdog Timer ? State its importance in connection with Embedded systems.
- iii) Distinguish between embedded computing and distributed computing.
- iv) Compare Von Neumann and Harvard Architecture of a processor based system.
- v) Distinguish between Embedded computing and Distributed computing.
- vi) Differentiate between Assembler and Compiler.

40075 [Turn over

CS/M.Tech (ECE)/SEM-1/MVLSI-105-B/2010-11

- vii) Differentiate between Fixed Point Processor and Floating Point Processor.
- viii) How do you define dead line requirements in connection with embedded system design?
- ix) Why Universal Time Code (UTC) is important in contrast to Timing & Synchronization ?
- x) Pulse Width Modulation (PWM) as a building block is an essential resource in Embedded systems. Explain.

GROUP - B

(Short Answer Type Questions)

Answer any *three* of the following. $3 \times 5 = 15$

- 2. Demonstrate how a Pulse Width Modulator (PWM) could be used as a Digital to Analog Converter (DAC).
- 3. Write a VHDL/Verilog Program for a four-bit multiplier logic circuit and highlight the simulated waveforms.
- 4. Implement a hardware for one cycle Multiply accumulate instruction often used in a DSP processor.
- 5. Briefly explain the SPI protocol widely used in embedded system.
- 6. Implement a Digital Phase Locked Loop (DPLL) to capture signal from 1 kHz to 20 kHz with a lock range of 100 Hz. Use 8-bit resolution to control the DPLL.

40075 2

(Long Answer Type Questions)

Answer any three of the following.

 $3 \times 15 = 45$

- 7. a) Briefly explain the organization of an Embedded system highlighting details of processor cores, memory cores, analog cores along with Analog/Digital I/O ports. 10
 - b) Highlight the Embedded System life cycle and discuss the issues of Design Challenge. 5
- 8. a) Briefly explain the I2C protocol widely used in embedded networking.
 - b) Briefly explain Hard Real Time and Soft Real time systems in contrast to embedded systems.5
- 9. Write a C51 code based on Keil PK-51 IDE for interfacing a Stepper motor. The angular speed of motor will be 1.8 degree/sec with provision for generating clockwise or anti-clockwise rotation. Also show the details of interfacing from PC to the embedded hardware board based on PK-51.15
- 10. Describe briefly the internal architecture of Intel 8051 as an example of 8-bit Embedded Microcontroller with a block schematic representation.

OR

Briefly explain the functional block diagram of an **OMAP Processor** used in **NOKIA mobile handset** as an example of a complete Embedded system.

15

40075 3 [Turn over

CS/M.Tech (ECE)/SEM-1/MVLSI-105-B/2010-11

- 11. a) Discuss briefly on the importance of programming tools

 (Hardware/Software) available in the embedded domain for the purpose of Hardware/Software integration, embedded debugging and code optimization & implementation.
 - b) Describe Intel Hex File format for downloading the Program Code to a Target Hardware. 5
- 12. Write short notes on any *three* of the following : 3×5
 - a) Device driver
 - b) IEEE single precision floating point format
 - c) System on Chip (SoC) Design
 - d) Integrated Development Environment (IDE)

4

- e) Boot Loader
- f) IEEE 1588 Standard.

40075