	Utech
Name:	
Roll No.:	A Spring Of Exercising and Explana
Invigilator's Signature :	

CS/M.Tech(ECE-N)/SEM-1/MCE-104/2011-12 2011

ADVANCED MICROWAVE COMMUNICATION ENGINEERING

Time Allotted: 3 Hours Full Marks: 70

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

GROUP - A

Answer any *five* of the following.

 $5 \times 2 = 10$

- 1. Explain how the limitations of conventional vacuum tubes are taken care in microwave vacuum tubes.
- 2. In a Gunn diode the drift velocity of electrons is $2*10^7$ cm/s through the active region of length $2*10^{-4}$ cm. Calculate the natural frequency of the diode and the critical voltage.
- 3. Write down the scattering matrix of a hybrid rat-race ring.
- 4. What is meant by non-reciprocal device? Explain with a four port device.

40639-(N) [Turn over

CS/M.Tech(ECE-N)/SEM-1/MCE-104/2011-12

- 5. State some applications of millimeter wave frequency. What are the special design criteria for such devices?
- 6. Explain Babinet principle using neat diagram. Give an application.
- 7. Explain how Duct propagation is used in Terrestrial communication.

GROUP - B

Answer any *five* of the following. $5 \times 12 = 60$

- 8. a) Write the stability conditions of microwave amplifiers in terms of impedances, reflection coefficients and S-parameters.
 - b) Design a GaAs MESFET amplifier at 6GHz for 50 ohm termination. Given parameters are $\Gamma_{sin}=0.76$ [] 180^{0} , $\Gamma_{L0}=0.72$ [] 104^{0} , G $_{max}=12$ dB. Design input and output matching circuits. 4+8
- 9. Explain with diagram, construction and operating principle of IMPATT oscillator. What are their limitations? 10 + 2
- 10. a) Draw a neat diagram of a Gunn diode oscillator circuit and explain its operation.
 - b) Describe strip line three-port circulator and give its applications. 6+6

- 11. A linear uniform array of N isotropic elements are uniformly excited along x-axis with inter-element phase shfit α . Establish the following :
 - a) Condition of no grating lobes
 - b) Beam broadening from broad side to end fire directions
 - c) Beam asymmetry while scanning. 4 + 4 + 4
- 12. a) Derive the equation of the surface geometry of a parabolic reflector antenna. Explain how cross-polarization occur in such reflectors.
 - b) A parabolic reflector has diameter 10 m, f/d = 0.5 and excited at 10 GHz with aperture efficiency 80%. Find the directivity. 6 + 2 + 4
- 13. What do you understand by Butterworth and Equal ripple filters. Design a microstrip LP Tchebyshev filter with $f_c = 2$ GHz, 30 dB attenuation at 3 GHz, ripple = 0·2 dB. Outline the microstrip simulation of this filter. Table of prototype parameters is given below: 4 + 8

0.2 dB ripple

	n						
k							
	1	2	3	4	5	6	7
1	0.4342	1.0378	1.2275	1.3028	1.3394	1.3598	1.3722
2	1.0000	0.6745	1.1525	1.2844	1.3370	1.3632	1.3781
3		1.5386	1.2275	2.9761	2.1660	2.2934	2.2756
4			1.0000	0.8468	1.3370	1.4555	1.5001
5				1.5386	1.3394	2.0974	2.2756
6					1.0000	0.8838	1.3761
7						1.5386	1.3722

CS/M.Tech(ECE-N)/SEM-1/MCE-104/2011-12

- 14. a) Explain how fading occurs in microwave propagation.

 Using neat diagrams describe two important techniques how fading is minimized.
 - b) The maximum electron density in the ionosphere layer is $10^{\,6}$ / cc. Find the lowest frequency that will penetrate the ionosphere to reach a satellite. 8+4