Name:	
Roll No. :	An Philosophi (5° Executively) 2 and Experiment
Invigilator's Signature ·	

CS/M.Tech(ECE)/SEM-1/MCE-101/2011-12 2011

ADVANCED ENGINEERING MATHEMATICS

Time Allotted: 3 Hours Full Marks: 70

The figures in the margin indicate full marks.

Answer Question No. 1 and any four from the rest.

1. Answer the following questions:

- $7 \times 2 = 14$
- i) Obtain $P(\bar{A} + B)$, $P(A + \bar{B})$ in terms of P(A), P(B) and P(AB).
- ii) If X is normal (m, σ) , then prove that

$$P\left(a < X < b\right) = \Phi\left(\frac{b-m}{\sigma}\right) - \Phi\left(\frac{a-m}{\sigma}\right).$$

- iii) What is the difference between saddle point and extreme point of a function of two variables?
- iv) Prove that $P(a < X \le b) = F(b) F(a)$.
- v) Let f(z) be analytic in a domain d then show that f is constant if $Re\{f(z)\}$ is constant in D.

40033 [Turn over

CS/M.Tech(ECE)/SEM-1/MCE-101/2011-12

- vi) Let $f(z) = \frac{1}{z^2}$ and Γ be the straight line joining the points i and 2 + i. Show that $\left| \int_{\Gamma} f(z) dz \right| \le 2$.
- vii) Prove that $\left(\frac{\Delta^2}{E}\right) x^3 = 6x$.
- 2. a) If $u = \tan^{-1} \frac{x^3 + y^3}{x y}$, find the value of $x^2 \frac{\partial^2 u}{\partial x^2} + 2xy \frac{\partial^2 u}{\partial x \partial y} + y^2 \frac{\partial^2 u}{\partial y^2}.$
 - b) Investigate the continuity of the following functions at the given points :
 - i) $f(x, y) = \frac{xy}{x^2 + y^2}, (x, y) \neq (0, 0).$
 - = 0 , (x, y) = (0, 0) at (0, 0). 3
 - ii) $f(x, y) = x \sin \frac{1}{y} + y \sin \frac{1}{x}$ if $xy \neq 0$
 - = 0, xy = 0 at (0, 0) 3
 - c) State the geometrical interpretation of partial derivativeof a function of two independent variables.
- 3. a) A top-open rectangular box has capacity 32 cft. Find the dimension of the box so that the total surface area is minimum.

- b) There are two identical urns containing 4 white and 3 red balls, 3 white and 7 red balls. An urn is chosen at random and a ball is drawn from it. Find the probability that it is from the first urn if the ball drawn is white.
- c) Two random variables X, Y have the least square regression lines with equations 3x + 2y 26 = 0 and 6x + y 31 = 0. Find E(X), E(Y) and $\rho(X, Y)$.
- 4. a) One card is selected at random from 100 cards numbered 00, 01, 02, ..., 98, 99. Suppose n_1 and n_2 are the sum and product respectively of the digits on the selected card. Find $P\left\{n_1 = i \mid n_2 = 0\right\}$.
 - b) If F(x, y, z) = 0, prove that

$$\left(\frac{\partial \mathbf{x}}{\partial \mathbf{y}}\right)_{\mathbf{z}} \times \left(\frac{\partial \mathbf{y}}{\partial \mathbf{z}}\right)_{\mathbf{x}} \times \left(\frac{\partial \mathbf{z}}{\partial \mathbf{x}}\right)_{\mathbf{y}} = -1.$$

c) If $u = f\left(\frac{y-x}{xy}, \frac{zx}{xz}\right)$ then prove that

$$x^{2} \frac{\partial u}{\partial x} + y^{2} \frac{\partial u}{\partial y} + z^{2} \frac{\partial u}{\partial z} = 0.$$

- 5. a) State Cauchy fundamental theorem.
 - b) Evalute $\int_{|z|=1} \frac{dz}{z+2}$ and deduce that

$$\int\limits_{0}^{\pi} \frac{1+2\,\cos\,\theta}{5+4\,\cos\,\theta} \ d\theta = 0. \label{eq:theta_theta}$$

1

CS/M.Tech(ECE)/SEM-1/MCE-101/2011-12

6. a) Solve the differential equation,

$$u_{x+2} - 7u_{x+1} + 12u_x = \cos x$$
 4

- b) Use Runge-Kutta method of order 2 to calculate y (0.2) for the equation $\frac{dy}{dx} = x + y^2$, y (σ) = 1.
- c) Find the maximum and minimum values of *y* from the following:

<i>x</i> :	0	1	2	5
y :	2	3	12	147

7. a) Find the cube root of 10 up to 5 significant figures by Newton-Raphson method.

4

b) State and prove Baye's theorem (in probability).

40033