	<u>Utech</u>
Name :	
Roll No.:	
Invigilator's Signature:	• • • • • • • • • • • • • • • • • • • •

CS/M.TECH(ECE/EE)/SEM-1/MCE/EMM-101/2011-12 2011

ADVANCED ENGINEERING MATHEMATICS

Time Allotted: 3 Hours Full Marks: 70

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

					GROUI	P – A					
			(Mu	ıltiple C	hoice 1	Гуре Qu	estic	ons)			
1.		ose wing		correct	alterr	natives	for	any		of × 1 =	
	i)			at <i>P</i> (A) = equal to		P(B) =	1/4,	P(A/	B)=1,	/6. T	`hen
		a)	1/8			b)	1/7				
		c)	1/6			d)	non	e of tl	iese.		
	ii)			tossed a			prob	ability	y of c	btaiı	ning
		a)	1/1	6		b)	1/3	2			
		c)	1/8			d)	non	e of tl	iese.		
	iii)			f of a va . Then c		is define	ed as	f(x)	= cx	(2 -	- <i>x</i>),
		a)	3/4			b)	2/3				
		c)	1/3			d)	non	e of tl	iese.		
	iv)	If f ($(z) = \overline{z}$	\bar{z} , then f	(0) is						
		a)	1			b)	- 1				
		c)	0			d)	does	s not	exist.		

41122 [Turn over

CS/M.TECH(ECE/EE)/SEM-1/MCE/EMM-101/2011-12

- v) If f(z) = u(x, y) + iv(x, y) then f'(z) is
 - a) $\frac{\partial v}{\partial y} i \frac{\partial u}{\partial y}$

b) $\frac{\partial u}{\partial x} - i \frac{\partial v}{\partial x}$

- c) $\frac{\partial u}{\partial y} + i \frac{\partial v}{\partial x}$
- d) $\frac{\partial u}{\partial x} + i \frac{\partial v}{\partial y}$.
- vi) Evaluate $\oint_C \frac{2}{z-\alpha} dz$, where C is the circle whose equation
 - is $|z-\alpha|=\rho$
 - a) 4πi

b) $2\pi i$

c) $\frac{\pi i}{2}$

- d) πi.
- vii) The order of he pole z = 0 of function $\frac{\sin z}{z^3}$ is
 - a) 1

b) 2

c) 3

- d) 4.
- viii) Geometrically the Lagrange interpolation formula for two points of Interpolation represents a
 - a) parabola
- b) straight line

c) circle

- d) none of these.
- ix) Can you apply Newton's forward and backward interpolation formula for Unequal spaced interpolation points?
 - a) No
 - b) Yes
 - c) Yes, when the number of points is greater than three
 - d) None of these.
- x) If tie occurs in selecting the departing vector, then the next solution must be
 - a) degenerate
- b) generate
- c) iteration
- d) none of these.
- xi) A linear programming problem possesses a finite optimal solution iff there exist feasible solutions
 - a) both primal and dual problems
 - b) only primal problem
 - c) only dual problem
 - d) none of these.

- xii) If for a binomial distribution b(x; n, p) = 4 and also P(x = 2) = 3P(x = 3), the value of P is
 - a) 1/3

b) 1/2

c) 1/4

d) none of these.

GROUP - B

(Short Answer Type Questions)

Answer any three of the following.

 $3 \times 5 = 15$

- 2. If $u-v=(x-y)(x^2+4xy+y^2)$ and f(z)=u+iv is an analytic function of z=x+iy, find f(z) in terms of z.
- 3. Evaluate $\frac{1}{2\pi i} \int_C \frac{e^{zt}}{(z^2+1)^2} dz$, if t > 0 and C is the circle |z| = 3.
- 4. Using Cauchy's Residue theorem, prove that

$$\int_{0}^{2\pi} \frac{\sin^{2} \theta}{a + b \cos \theta} d\theta = \frac{2\pi}{b^{2}} [a - \sqrt{a^{2} - b^{2}}]; a > 0, b > 0.$$

5. Find the value of the constant *k* such that

$$f(x) = kx(1-x), 0 < x < 1$$

= 0, elsewhere

is a possible density function and compute P(x>1/2). Also find E(X).

6. Prove that $-1 \le r_{xy} \le 1$, where r_{xy} is correlation coefficient of x and y.

GROUP - C

(Long Answer Type Questions)

Answer any three of the following.

 $3 \times 15 = 45$

- 7. a) Let (x, y) and (u, v) represent two sets of bivariate data such that u = ax + b and v = cy + d, then prove that $r_{uv} = \frac{ac}{|a||c|} r_{xy}$; where a, b, c, d are constants.
 - b) Calculate the coefficient of correlation and obtain the lines of regression for the following data:

	mics of regression for the following data:									
Γ	<i>x</i> :	1	2	3	4	5	6	7	8	9
Г	y :	9	8	10	12	11	13	14	16	15

Obtain an estimate of y which should corresponds on the average to x = 6.2.

CS/M.TECH(ECE/EE)/SEM-1/MCE/EMM-101/2011-12

- 8. a) Find mean and variance of Binomial and Normal distributions.
 - b) If *X* is normally distributed with mean 3 and s.d. 2, find c such that $P(X > c) = 2P(X \le c)$. Given $\int_{-\infty}^{0.43} \phi(t) dt = 1/3$
- 9. a) Apply Newton's forward interpolation formula to find f'(0) and f''(0) (correct up to 3 decimal places) from the following data :

<i>x</i> :	0	0.4	0.8	1.2
f(x):	0	0.493	2.022	4.666

- b) Determine the eigenvalues and the corresponding eigenvectors of the matrix $A = \begin{bmatrix} 2 & 2 & 0 \\ 2 & 1 & 1 \\ -7 & 2 & -3 \end{bmatrix}$
- 10. a) Solve the following L.P.P.:

Minimize
$$Z = 4x + 8y + 3z$$

$$s.t. \ x+y \geq 2$$

$$2x + z \ge 5$$

$$x, y, z \ge 0.$$

b) Use dual simplex method to solve the following L.P.P.:

$$Minimize Z = x + 2y + 2z$$

$$s.t 4x - 5y + 7z \le 8$$

$$2x - 4y + 2z \ge 2$$

$$x - 3y + 2z \le 2$$

$$x, y, z \ge 0$$