

CS/ M.TECH (ECE)/ SEM-1/ MCE-101/ 2012-13 2012
 ADVANCED ENGINEERING MATHEMATICS

Time Allotted : 3 Hours
Full Marks : 70

The figures in the margin indicate full marks.
Candidates are required to give their answers in their own words as far as practicable.

Answer Question No. 1 and any four from the rest.

1. a) Find the critical point of the function $f(x, y)=x y$. 2
b) Show that another form of Euler-Lagrange equation is $\mathrm{d} / \mathrm{d} x\left[f-y^{\prime} \partial f / \partial y^{\prime}\right]-\partial f / \partial x=0$.
c) Evaluate $\int_{C} \sin 6 z /(z-\pi / 6)^{3} d z$, if $C:|z|=1$.
d) Find the Laurents Expansion for
$f(z)=(z-2)(z+2) /(z+1)(z+4)$, when $1<|z|<4$.
e) If A and B are two mutually independent events then show that A^{\prime} and B^{\prime} are also mutually independent.
2. a) State and prove Bayes' theorem.
b) In a bolt factory, machines A, B, C manufacture, 25,35 and 40 per cent of the total respectively. Of this output 5,4 and 2 per cent are defective bolts. A bolt is drawn at random from the product and is found defective. What is the probability that it was manufactured by C ?
3. a) Show that the shortest wave joining two fixed points is a straight line.
b) If $f(z)$ be analytic within and on a simple closed contour C, then the point giving the maximum of the $|f(z)|$ can be on the boundary c and within it prove that. 7
4. a) Use Runge's method to find an appropriate value of y when $x=0.8$ given that
$\mathrm{d} y / \mathrm{d} x=(x+y)^{1 / 2}$ when $y(0.4)=0.41$.
b) Given $\mathrm{d} y / \mathrm{d} x=x^{2}(1+y)$ and $y(1)=1$,
$y(1.1)=1.233, y(1.2)=1.548$,
$y(1.3)=1.979$, Evaluate $y(1.4)$ by Milne's predictor corrector method.
5. a) Find the optimum value of $f(x, y)=x^{2} y^{2}$ subject to the condition $x+y=1$ using Lagrange's multiplier method.
b) Show that, if $f(z)$ is continuous function in a simply connected domain D and if $\int_{c} f(z) \mathrm{d} z=0$, where c is any rectifiable closed Jordon curve in D then $f(z)$ is analytic in D. 7
6. a) Show that the necessary condition for
$\int_{x_{1}}^{x_{2}} f\left(x, y, y^{\prime}\right) \mathrm{d} x$ to be an extremum is
$\partial f / \partial y-\mathrm{d} / \mathrm{d} x\left(\partial f / \partial y^{\prime}\right)=0$.
b) Find the mean and variance of binomial distribution having parameters n and p.
7. a) Find the extremals of the following functionals
i) $\int_{x_{0}}^{x_{1}}\left(x+y^{\prime}\right) y^{\prime} \mathrm{d} x$
ii) $\int_{x_{0}}^{x_{1}}\left(y^{\prime 2} / x^{3}\right) \mathrm{d} x$.
b) Solve the following difference equations :
i) $\left(\Delta^{2}-3 \Delta+2\right) y_{x}=0$
ii) $U_{n+3}-3 U_{n+2}+4 U_{n}=0$.
8. a) Evaluate $\int_{0}^{2 \pi} e^{-\cos \theta}(\cos (n \theta+\sin \theta)) d \theta$ where n is a positive integer.
b) If $f(z) \rightarrow 0$ uniformly as $|z| \rightarrow \infty$ and $f(z)$ is meromorphic in the upper half plane then show that
$\underset{\boldsymbol{R} \rightarrow \infty}{\boldsymbol{L t}} \int_{c_{R}} e^{i m z} f(z) \mathrm{d} z=0(m>0)$
where $C R$ denotes semicircle $|z|=R, I(z)>0$.
