	/ Ulegh
Name :	A
Roll No.:	A standard O'S amounting and Explained
Inviailator's Signature :	

CS/M. Tech (ECE)/SEM-1/MCE-103/2011-12

2011 ADVANCED DIGITAL SIGNAL PROCESSING

Time Allotted: 3 Hours Full Marks: 70

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

Answer Question No. 1 and any four from the rest.

- a) What are meant by stable and unstable systems.
 Explain with examples.
 - b) Obtain the value of the following summation : $\sum_{n=-\infty}^\infty \delta\big(n-2\,\big)\sin 2n.$ Determine whether the sequence
 - $x(n) = a^n u(-n-1)$ is causal or not.
 - c) Explain the statement– 'Aperiodic finite energy signals have continuous spectra'.
 - d) What are the applications of Wavelet Transforms. 3
 - e) Explain the necessity of Equalizer in the context of communication theory.

40518 [Turn over

2. Determine the energy and power of the signal $x(n) = \left(\frac{1}{3}\right)^n u(n)$ and classify whether it is an energy or power

signal. What is convolution. Explain the properties of convolution. Determine the convolution sum of the two sequences $x(n) = \{3, 2, 1, 2\}$ and $\{1, 2, 1, 2\}$

- 3. If $x_1(n)$ and $x_2(n)$ are discrete time signals, prove that $x_1(n) \circledast x_2(n) \xrightarrow{D.T.F.T.} X_1(\omega) X_2(\omega)$. Evaluate the DTFT $X(\omega), X_R(\omega), X_I(\omega)$, the amplitude $|X(\omega)|$ and phase spectrum $\bowtie X(\omega)$ of the D.T. Signal $x(n) = a^n u(n)$, 0 < a < 1. State the Wiener-Khintichne theorem.
- 4. Evaluate the system response to complex exponential signals. Determine the magnitude and phase of H (ω) for the three-point moving average system $y(n) = \frac{1}{3}$ [x(n+1)+x(n)+x(n-1)].

Why the output of an LTI system cannot contain the frequency components not contained in the input signal? 14

5. Evaluate the four-point DFT of the sequence $x(n) = \{2, 0, 3, 4\}$ and obtain the corresponding magnitude and phase response. Explain the advantages of Digital filters. What is the effect of finite word length in digital filters?

40518 2

CS/M. Tech (ECE)/SEM-1/MCE-103/2011-12

- 6. Explain the steepest descent (SD) method of adaptive filters.

 What is the disadvantage of the SD method? What is the necessity of Kalman filter?
- 7. Write short notes on any *two* of the following : 2×7
 - a) Power estimation using DFT.
 - b) Interpolator Time & Frequency domain characterization
 - c) Radix 2 Fast Fourier Transform
 - d) Chirp-2 Transform.

40518 3