

CS/M. Tech (ECE)/SEM-1/MCE-103/2011-12 2011
ADVANCED DIGITAL SIGNAL PROCESSING
Time Allotted: 3 Hours

The figures in the margin indicate full marks.
Candidates are required to give their answers in their own words as far as practicable.

GROUP - A

(Objective Type Questions)

1. Answer any ten of the following questions.
$10 \times 1=10$
i) What is the system impulse response if the input and output are $x(n)=(1 / 2) n u(n), y(n)=(1 / 2) n u$ (n) respectively ?
ii) Convert the non-recursive system $H(z)=1+z-1+z-2$ $+z-3+z-4$ into recursive system.
iii) How the limit cycle oscillations due to overflow are minimized?
iv) Determine the direct form realizations for the filter $h(n)=\{1,2,3,4,3,2,1\}$
v) What are the advantages of multistage implementation in multirate signal processing ?

vi) Where will you place zero \& poles in a filter to eliminate 50 Hz frequency in a sampled signal at sampling frequency $\mathrm{F}=600 \mathrm{~Hz}$?
vii) Define sample autocorrelation function. Give the mean value of this estimate.
viii) What is the basic principle of Welch method to estimate power spectrum ?
ix) How do find the ML estimate ?
x) Give the basic principle of Levinson recursion.
xi) What is meant by image smoothing and image sharpening ?
xii) Give the two channel wavelet filter banks to decompose the input signal into frequency bands.

GROUP - B

(Long Answer Type Questions)

Answer any four of the following. $4 \times 15=60$
2. a) An LTI-DTS is described by the following difference equation. $y(n)-0.6 y(n-1)+0.25 y(n-2)=x(n)$ $-0.8 \times(n-1) ; n \geq 0$; initial rest. Find its complete response when an input $x(n)=0.3 \sin 0.3 n$ is applied from $n=0$ onwards by solving the difference equation. Do not use Z transforms.

b) What is meant by BIBO stability of a LTI-DTS system ? Prove that if the impulse response of a LTI-DTS is absolute summable it will be BIBO stable. $10+5$
3. a) A transfer function given below is implemented in cascade form using 8-bit fixed-point arithmetic. Find out the pole locations of the system in the case of infinite precision system and 8-bit fixed point system that uses truncation.

$$
\frac{(z+1)^{2}}{z^{2}+0 \cdot 63 z+0 \cdot 72}
$$

b) The input to a narrow bandpass filter in the discrete domain with centre frequency of $\pi / 4$ radians and bandwidth of 0.01 rad is given by $x(n)=1$ for $0 \leq n \leq 3$ and 0 for other values of ' n '. Find its approximate output by Fourier Transform techniques. $5+10$
4. a) Transform a third order Butterworth low pass filter with $D C$ Gain of unity and cut-off frequency of $1 \mathrm{rad} / \mathrm{sec}$ into discrete domain by impulse invariant transformation using 1 sec sampling and obtain $H(z)$.
b) A LTI-DTS transfer function has poles at 0.3$\} j 0.4$ and $0.6\} j 0.7$. It has zero at $z=-1$ with multiplicity of four. It has a DC Gain of unity. Draw the signal flow graph in (i) Cascade form and (ii) Parallel form. $5+10$
5. Design the following low pass filter in the disefete time domain using Bilinear Transformation. Passband Gain ≥ 0.95, Stopband Gain ≤ 0.05, Passband Edge $=5 \mathrm{kHz}$, Stopband Edge 15 kHz , Sampling Frequency 50 kHz . Monotonic Gain in both passband and stopband is desired.
6. Find out the impulse response of a FIR filter designed by Windowing using a Hamming window to approximate the frequency response given on the right side. Wc1 = 1 rad , $\mathrm{Wc} 2=2 \mathrm{rad}$.

7. Mark the poles and zeros of the system with the signal flow graph given below. (ii) Calculate the steady state gain in magnitude and phase at frequencies $\pi / 6 \mathrm{rad}$ and $\pi / 3 \mathrm{rad}$ using geometric interpretation of frequency response in the z-plane, Show the distance and angle calculations clearly.

8. Write short notes on any three of the following : 3×5
a) Overlap and add method
b) Bilinear transformation
c) Radix-2 DIT FFT algorithm
d) BIBO stability
e) Linear convolution.

