	Utech
Name :	
Roll No. :	A Spinor (V Exception 2nd Excellent
Invigilator's Signature :	

CS/M.Tech(ECE)/SEM-1/MVLSI-103/2010-11 2010-11

ADVANCED DIGITAL INTEGRATED CIRCUIT DESIGN

Time Allotted: 3 Hours Full Marks: 70

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

Answer Question No. 1 and any four from the rest.

- 1. Write *true* of *false* with proper justification :
 - i) SRAM is a bistable circuit.
 - ii) Bootstrap capacitance is used to remove charge sharing problem.

 7×2

- iii) Enhancement NMOS can be used as load in CMOS configuration.
- iv) In a single HDL program both dataflow and structural and behavioural design can be used.
- v) Zipper clock is a type of global clock.
- vi) Simulated annealing is a type of combinational logic optimization.
- vii) BDD is a combinational logic optimization.
- 2. a) Implement a 4-input decoder using VHDL.
 - b) Write the difference between different design methodologies of writing HDL program.
 - c) What is HDL? 7 + 5 + 2

40584 [Turn over

- 3. a) What is dynamic logic circuit? Discuss its advantage and disadvantage over static logic.
 - b) Calculate the time taken for the Dynamic NMOS logic'0' transfer event.
 - c) Design a dynamic D register with single clock transmission gate logic. 4+5+5
- 4. a) What is cascading problem in dynamic CMOS logic circuit and how can it be removed?
 - b) Implement the following function using dynamic logic, domino logic and four phase clock.

$$F = A + B'$$
. $C + D$. $(A + C')$

5. a) Design FSM for the following table :

Present State			Input	Next State			Output
	P	P	X		N	N	Z
	1	0			1	0	
S_{EE}	0	0	<i>a</i> = 00	S_{OE}	1	1	p = 0
=				=			
S_{EE}	0	0	<i>b</i> = 01	S_{EO}	0	1	p = 0
=				=			
S_{EE}	0	0	c = 10	$S_{EE} =$	0	0	p = 0
=							
S_{EO}	0	1	<i>a</i> = 00	S_{oo}	1	0	q = 1
=				=			
S_{EO}	0	1	<i>b</i> = 01	$S_{EE} =$	0	0	q = 1
=							
S_{EO}	0	1	<i>c</i> = 10	S_{EO}	0	1	q = 1
=				=			
S_{oo}	1	0	<i>a</i> = 00	S_{EO}	0	1	p = 0
=				=			

$$S_{OO}$$
 1 0 $b = 01$ S_{OE} 1 1 $p = 0$
 $=$
 S_{OO} 1 0 $c = 10$ S_{OO} 1 0 $p = 0$
 $=$
 S_{OE} 1 1 $a = 00$ S_{EE} $=$ 0 0 $p = 0$
 $=$
 S_{OE} 1 1 $a = 01$ $a = 00$ $a = 0$
 $=$
 S_{OE} 1 1 $a = 0$ $a =$

- b) What is the difference between Moore Machine and Mealy machine ? 10 + 4
- 6. a) What is BDD? How is it helpful in logic optimization?

 Discuss with proper example.
 - b) Design layout for the following CMOS logic function.

$$F = (A.B) + C.(D + E)$$
 7 + 7

- 7. a) What is meant by self timed system?
 - b) What is multiphase logic system? Describe with proper example.
 - c) Compare between SRAM and DRAM.
 - d) Describe how DRAM works. 2 + 3 + 2 + 7
- 8. Write short notes on the following: 7 + 7
 - a) Flash memory
 - b) Genetic algorithm.