	Utech
Name:	
Roll No.:	The Samuel of Samuel State of Samuel
Invigilator's Signature :	

CS/M.TECH(ECE)/SEM-1/MC-103/2010-11 2010-11

ADVANCED DIGITAL COMMUNICATION AND CODING

Time Allotted: 3 Hours Full Marks: 70

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

Answer Question No. 1 and any four from the rest.

- 1. Explain the following terms briefly: $4 \times 2\frac{1}{2}$
 - a) Nyquist criteria for zero ISI.
 - b) Convolution Encoder.
 - c) Error Correction and Detection Capabilities of Hamming Code.
 - d) Properties of linear block codes.
- 2. a) Explain the operation of integrate and dump filter.

 Derive the expression of its Signal to noise ratio.
 - b) What do you mean by match filter? Find the expression for impulse response for match filter.

$$(2+6)+(2+5)$$

40633 [Turn over

CS/M.TECH(ECE)/SEM-1/MC-103/2010-11

- 3. a) Explain the scheme of generation of QPSK signal.
 - b) Write down the time domain expression for BFSK signal. Find the bandwidth requirement for BFSK signal.
 - c) What do you mean by M-ray FSK? 6 + (4 + 2) + 3
- 4. a) Explain the concept of spread spectrum.
 - b) Draw the block diagram of DS-SS transmitter with binary phase modulation and explain its operation.
 - c) What are the advantages of FH-SS over DS-SS?

$$5 + 6 + 4$$

- 5. a) State Shannon's channel coding theorems.
 - b) Explain the scheme of syndrome decoding of linear block code.
 - c) The parity check matrix of a (7, 4) linear block code is as given below:

$$\begin{bmatrix} 1 & 1 & 0 & 1 & 1 & 0 & 0 \\ 1 & 1 & 1 & 0 & 0 & 1 & 0 \\ 1 & 0 & 1 & 1 & 0 & 0 & 1 \end{bmatrix}$$

Calculate the syndrome vector for single bit error and also find the syndrome decoding table. 3 + 5 + (4 + 3)

CS/M.TECH(ECE)/SEM-1/MC-103/

- 6. a) Show that for systematic cyclic code the check bit polynomials is C(P) = remainder $[p^q M(P)/G(p)]$.
 - b) The generator polynomial of a (7, 4) cyclic code is (G (P) = P 3 + P 2 + 1. Find the systematic cyclic code for the message (0101).
 - c) What are the differences between line coding and error detection coding? 6+6+3
- 7. Write short notes on any *three* of the following: 3×5
 - a) WCDMA
 - b) BCH coding
 - c) Structure properties of convolution coding
 - d) GSM
 - e) Frequency hopping spread spectrum.