	000 Utech
Name :	····· <u>A</u>
Roll No. :	A America and a second
Invigilator's Signature :	

CS/M.Tech (ECE)/SEM-1/MC-101/2010-11 2010-11 ADVANCE ENGINEERING MATHEMATICS FOR COMMUNICATIONS

Time Allotted : 3 Hours

Full Marks : 70

The figures in the margin indicate full marks. Candidates are required to give their answers in their own words as far as practicable.

GROUP – A (Short Answer Type Questions)

- 1. Answer all the following : $5 \times 2 = 10$
 - a) Write the advantages and disadvantages of Graeffe's root squaring method to solve an algebraic equation.
 - b) Write the limitations of an L.P.P.
 - c) Define pure birth model in Queuing theory.
 - d) Define even and odd functions and given its implication on Fourier series. For what kind of signal Fourier series can not be applied to find the spectrum ?

e) Prove that for a complex variable z = x + jy, $z^{-1} = \frac{\overline{z}}{|z|^2}$.

[Turn over

40631

CS/M.Tech (ECE)/SEM-1/MC-101/2010-11

(Long Answer Type Questions

GROUP – B

Answer any *four* of the following. $4 \times 15 = 60$

- a) Derive the condition of convergence of Newton-Raphson method to approximate a root algebraic or transcendental equations.
 - b) Write the geometrical interpretation of Newton-Raphson method.
 - c) By Graeffe's method, compute the roots of the equation $x^3 13x^2 + 47x 35 = 0$, correct up to four decimal places. 7
- 3. Arrival at a telephone booth are considered to be Poisson, with an average time of 10 minutes between one arrival and the next. The length of a phone call is assumed to be distributed exponentially with mean 3 minutes.
 - i) What is the probability that a person arriving at the booth will have to wait ?
 - ii) Find the average no. of units of the system.
 - iii) Find the probability that a customer will have to wait more than 10 minutes before the phone is free.
 - iv) Find the probability that there are more than5 customers waiting for call.15

40631

WEST SENGAL LINVERSITY OF SECHNOLOGY

7

4. a) Find by Lagrange's formula the polynomial of degree three in x by using the following data and compute $f(2\cdot3)$.

b) Solve graphically the following L.P.P. :

$$x_1 + x_2 \le 6, \ 6x_1 + 3x_3 \ge 12, \ 2x_1 + 3x_2 \ge 6, \ x_1, x_2 \ge 0$$
 6

- c) Write the limitations of Graphical solution of linear programming problem. 2
- 5. a) Define a complex analytic signal f(z), where z = x + jy. If u(x, y) and v(x, y) are real-valued functions, such that f(z) = u(x, y) + jv(x, y), define Cauchy-Riemann relations for the functions to be conformal. 3
 - b) Show that $f(z) = ln(z^2)$ satisfy Cauchy-Riemann relations. 4

c) Find
$$\int_{0}^{\infty} \frac{\sin x}{x} dx$$
, by contour integration. 8

6. a) A trigger pulse is defined by

$$\delta(t) = \frac{1}{\tau}; \ 0 \le t \le \tau$$
$$= 0; \ t > \tau \to 0$$

Determine the frequency spectrum of this signal and show its graphical representation. 5

b) The probability density function of a random signal is given by :

 $p(x) = Ke^{-|x|}.$

Determine the probability of occurrence of outcome X within ± 1 . 5

c) State and prove Chebyshev's inequality in random process. 5

40631

[Turn over

- 7. An electrically charged square conducting plate 2a metres on each side is symmetrically placed on the z = 0 plane with centre at the origin. If the thickness of the plate is negligible small and σ (x, y) represents the surface charge density on the plate,
 - a) Find an expression of capacitance of the plate
 - b) Show graphical representation of the charge density distribution on the plate.
 12 + 3
- 8. A shielded strip line shown below is excited by a voltage IV at the centre plate while the outer shield is grounded. Determine the characteristic impedance of the line using FDM.
 15

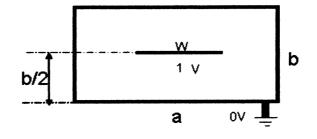


Fig.

40631