	Utech
Name:	
Roll No.:	A dynamic (5' Kaminings 2ml Standard
Invigilator's Signature :	

CS/M.Tech(CSE)/SEM-3/CS-1111/2009-10 2009

IMAGE PROCESSING AND PATTERN RECOGNITION

Time Allotted: 3 Hours Full Marks: 70

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

Answer any *five* questions. $5 \propto 14 = 70$

8

- a) What are the major reasons behind image digitization?
 Define the processes of sampling and quantization.
 - b) Write down Shannon's sampling theorem. What is its significance?
 - c) A $4 \propto 4$ sampled image is given below:

2.3	3.2	10.1	9.9
1.0	1.8	9.7	8.9
9.3	10.2	2.1	1.9
8.8	9.8	1.7	1.6

Quantize this image assuming 16 quantization levels with intensities ($0, 1, 2, \dots, 15$).

Compute the RMS value of the quantization error.

200057 [Turn over

CS/M.Tech(CSE)/SEM-3/CS-1111/2009-10

b)	Consider the following one dimensional image (\it{I}) a) and	1		
	one	dime	ensio	nal	mas	k (M). P	erform	ı a	linear	r
	convolution.									į	5	
	<i>I</i> =	1	3	5	4	2		M =	- 2	4	- 2	

c)	Consider that the above image and mask both converted								
	to their frequency domain counterparts								
	(Fourier transform). Compare the number of								
	multiplication, to perform convolutions is spatial and								
	frequency domains. 5								

- 3. a) Write down the relations for forward and backward Fourier transformation relations in discrete notation. 4
 - b) Derive the relation for Fast Foureir Transform (FFT). 6
 - c) Show that a 2-D DFT (Discrete Fourier Transform) is linearly separable.
- 4. a) What is an image histogram? What is its importance in image processing?
 - Name some image enhancement techniques that depend on histogram. Do you consider that image gray level slicing can be performed by histogram processing?
 Explain with an example.

2

200057

							-		
Gray level i	0	1	2	3	4	Цф	·6-	6-27EV	
No. of pixels n_i	2	1	2	4	4	1	2	0	

Find out the histogram of the corresponding negative image.

- 5. a) What are the differences between image smoothing and image averaging?
 - b) Explain how noise removal can be performed by image smoothing and image averaging.
 - c) For the following one dimensional image

perform the smoothing operation using the mask

$$\frac{1}{3}$$
 ∞ 1 1 1

6

- 6. a) In what ways boundary detection is useful in image processing?
 - b) Write down (pointwise) the objectives and problems of boundary detection. How first and second order difference operators work for this purpose?
 - c) Explain the effects of varying the thresholds in boundary detection.

200057 3 [Turn over

CS/M.Tech(CSE)/SEM-3/CS-1111/2009-10

7.	a)	Define a region in an image. Write down an algorith	m to
		perform region splitting based segmentation. Defi-	ne a
		suitable homogeneity property for this purpose.	6

- b) Write down the advantages and disadvantages of lossless and lossy image compression techniques. 4
- c) Write down the steps of Huffman encoding. 4
- 8. a) Mention the basic steps of pattern recognition and define classification.
 - b) Draw perceptrons with and without a bias node and explain their functionality (use analytic expressions). 6
 - c) Derive a suitable perceptron learning algorithm. 4

200057