

CS/ M.Tech(CSE)/ SEM-3/ CSEM-302/ 2012-13 2012
 COMPILERS

The figures in the margin indicate full marks.
Candidates are required to give their answers in their own words as far as practicable.

GROUP - A

Answer any five questions. $5 \times 2=10$

1. Consider the following grammar :
$\mathrm{S} \rightarrow \mathrm{AaAB} \mid \mathrm{BbBa}$
$A \rightarrow \varepsilon$
$B \rightarrow \varepsilon$
Check the grammar is LL(1) or not.
2. Compute the FIRST and FOLLOW sets for each non-terminal of the grammar given below :
$\mathrm{S} \rightarrow \mathrm{ABa} \| \mathrm{bCA}$
$\mathrm{A} \rightarrow \mathrm{cBCD} \mid \varepsilon$
$\mathrm{B} \rightarrow$ CdAlad
$\mathrm{C} \rightarrow \mathrm{eCl} \mathrm{\varepsilon}$
$\mathrm{D} \rightarrow \mathrm{bSfl} \mathrm{a}$

CS/M.Tech(CSE)/SEM-3/CSEM-302/2012-13
3. What is an activation record ? Explain clearly the components of an activation record.
4. Construct DAG for the following code :

$$
\begin{aligned}
& a=a+b \\
& e=a+d+e
\end{aligned}
$$

5. Define viable prefix.

Given a grammar

$$
\begin{aligned}
& \mathrm{E} \rightarrow \mathrm{E}+\mathrm{TIT} \\
& \mathrm{~T} \rightarrow \mathrm{~T}^{*} \mathrm{~F} \mid \mathrm{F} \\
& \mathrm{~F} \rightarrow \mathrm{id}
\end{aligned}
$$

which is a set of valid items for a viable prefix $\mathrm{E}+$.
6. Generate three address code for following 'C' program :

```
main()
{
        int i = 1;
        int a [10];
        while ( i<=10)
        {
            a[i] = 0;
            i++;
    }
}
```

Write type expressions for the types of foo and bar.

```
    GROUP - B
Answer any four questions. 4 < 15=60
```

8. Construct $\operatorname{LR}(1)$ parsing table for the following augmented grammar :

$$
\begin{aligned}
& \text { goal } \rightarrow \text { expr } \\
& \text { expr } \rightarrow \text { term }+ \text { expr } \\
& \text { expr } \rightarrow \text { term } \\
& \text { term } \rightarrow \text { factor } * \text { term } \\
& \text { term } \rightarrow \text { factor } \\
& \text { factor } \rightarrow \text { id }
\end{aligned}
$$

Show LR(1) automaton also.
9. a) Given grammar :

1) $\mathrm{L} \rightarrow \mathrm{En}$
2) $\quad \mathrm{E} \rightarrow \mathrm{E}_{1}+\mathrm{T}$
3) $\mathrm{E} \rightarrow \mathrm{T}$
4) $\mathrm{T} \rightarrow \mathrm{T}_{1} * \mathrm{~F}$
5) $\quad T \rightarrow F$
6) $\quad \mathrm{F} \rightarrow(\mathrm{E})$
7) $\quad \mathrm{F} \rightarrow$ digit.

Write down syntax directed definition for the given grammar where n is the end marker of the input string. In the SDD, each of the non-terminals has a single syntax attribute, called val. The terminal digit has a synthesized attribute lexval which is an integer value returned by the lexical analyzer.
b) For the abvoe SDD give annotated parse trees of the following expr

$$
(3+4) *(5+6) n
$$

c) How to determine an evaluation order for the attribute instances in a given parse tree. Explain with example.

$$
3+6+6
$$

10. a)

Fact(x)
\{

```
int f = 1;
```

for ($\mathrm{i}=2 ; \mathrm{i}<=\mathrm{x} ; \mathrm{i}++$)
\{
$\mathrm{f}=\mathrm{f} * \mathrm{i} ;$
return (f);
\}

Write down three address code for the above program. Partition the code into basic blocks and construct the flow graph.
b) Construct DAG for the following basic block.

$$
\begin{aligned}
& d:=b * c \\
& e:=a+b \\
& b:=b * c \\
& a:=e-d
\end{aligned}
$$

c) Explain structure-preserving transformations and algebraic transformations of basic blocks using examples.

$$
6+6+3
$$

11. a) Generate code for the following expression: $x=(a+b)-((c+d)-e)$
b) switch $(a+b)$
\{
case $1:\{x=y+z$; break; $\}$
default : $\{\mathrm{p}=\mathrm{q}+\mathrm{r} ;$ \}
case 2: $\{\mathrm{u}=\mathrm{v}+\mathrm{w}$; break; \}
\}
Write down three address representation of the above code segment.
c) Construct $\mathrm{LL}(1)$ parsing table for the following grammar :

$$
\begin{aligned}
& \mathrm{S} \rightarrow \mathrm{~A} \\
& \mathrm{~A} \rightarrow \mathrm{aB} \mid \mathrm{Ad} \\
& \mathrm{~B} \rightarrow \mathrm{bBC} \mid \mathrm{f} \\
& \mathrm{C} \rightarrow \mathrm{~g}
\end{aligned}
$$

12. Construct SLR parsing table for the given grammar. Also check acceptability of the input string:abbcbcde\#[\# is the endmarker]

$$
\begin{aligned}
& \mathrm{S} \rightarrow \mathrm{aABe} \\
& \mathrm{~A} \rightarrow \mathrm{Abc} \\
& \mathrm{~A} \rightarrow \mathrm{~b} \\
& \mathrm{~B} \rightarrow \mathrm{~d}
\end{aligned}
$$

b) Symbol table
c) Storage allocation strategies.

