

CS/M.Tech(CSE)/SEM-2/MCSE-203/2013

2013

SOFTWARE ENGINEERING

Time Allotted: 3 Hours
Full Marks : 70
The figures in the margin indicate full marks.
Candidates are required to give their answers in their own words as far as practicable.

GROUP - A

1. Answer any seven of the following :
$7 \times 2=14$
i) Which life cycle model would you suggest in radiation therapy system ? Explain your views.
ii) What do you mean by scope of control ? Explain with a diagram.
iii) What is the difference between big-bang testing and beta testing ?
iv) What is the advantage of ISO : 9000 over CMM with reference to S / W quality ?
v) What is a class diagram with reference to UML ? Explain.
vi) In case of a structure design, what is the one factor which should be avoided \& why ?
vii) What is the advantage of COCOMO-II model over COCOMO-I ? Justify your views.
viii) What is the need to convert a DFD to a structured chart ? Explain clearly.
ix) Is there any disadvantage of a DFD ? Justify your views for or against.
x) Which one would you prefer for complex decision logic design : decision tree or decision table and why ?

GROUP - B

Answer any four of the following. $4 \times 14=56$
2. For the following C program, estimate all the Halstead's length and volume measures :

```
int compute_gcd ( int x, int y ) {
```

while (x! = y) \{
if ($x>y$) then
x = x - y;
else
$y=y-x ;$
\}
return x;
3. a) What advantages does complete COCOMO model offer over basic \& intermediate COCOMO ? Explain clearly.
b) The values of size in KLOC and different cost drivers for a project are given below :
Size $=200$ KLOC
Cost driver :
Software reliability : $1 \cdot 15$
Use of software tools : 0.91
Product complexity : 0.85
Execution time constraint : $1 \cdot 00$
Calculate the effort for embedded type of project using COCOMO model.
c) State some disadvantages of LOC.
$5+5+4$
4. a) Draw the (O-level, 1-level, 2-level) DFD of an ATM transaction model.
b) Design the data-dictionary for the DFD drawn. $9+5$

5. A chemical plant has a number of emergency conditions. When any of the emergency condition occurs, some prespecified actions should be taken. The different emergency conditions and the corresponding actions are as follows :
a) If the temperature of the chemical plant exceeds $T_{1}{ }^{\circ} \mathrm{C}$, then the water shower should be turned ON, and the heater should be turned OFF
b) If the temperature of the chemical plant falls below $T_{2}{ }^{\circ} \mathrm{C}$, then the heater should be turned ON, and the water shower should be turned OFF
c) If the pressure of the chemical plant is above P_{1}, then the valve v_{1} should be OPENED
d) If the chemical concentration of the tank rises above M, and the temperature of the tank is more than $T_{3}{ }^{\circ} \mathrm{C}$, then the water shower should be turned ON
e) If the pressure rises above P_{3}, and the temperature rises above $T_{1}{ }^{\circ} \mathrm{C}$, then the water shower should be turned ON, valves v_{1} and v_{2} OPENED and the alarm bell sounded.
i) Draw a Decision Tree for the problem.
ii) Draw a Decision Table for the problem
$7+7$
6. a) Design a black box suite for a function quadratic_solver which takes 3 floating point numbers (a, b, c) and computes the solution.
b) Consider the following C program :

```
void sort ( int a[ ], int n ) {
int i, j;
for (i =0; i<n-1; i++)
for (j=i+1; j<n; j++)
if (a [i] > a[j]
{
                    temp = a [ i ];
                    a [ i ] = a [ j ];
                    a [ j ] = temp;
}
```

Draw the CFG and find out the cyclomatic complexity for the problem.
c) Differentiate between a flowchart and a CFG. $A+6+4$

7. a) Identify the type of analysis used in this diagram.
b) Convert the DFD into a structure chart. $3+11$
8. Suppose you have the following set of activities \& their activity relationships.

Activity	Duration	Predecessors
A	10	-
B	5	A
C	8	B
D	10	A
E	10	C, D
F	6	A
G	9	F
H	13	E, G

a) Draw the PERT chart \& find the critical path.
b) Find the Gantt chart representation for the problem.

$$
7+7
$$

