	Vresh
Name :	

Invigilator's Signature : \qquad
CS/ M.Tech (SE, CSE)/ SEM-2/ PGSE-203, PGCSE-204A/ 2013 2013 PRINCIPLES OF LANGUAGE TRANSLATION

Time Allotted : 3 Hours
Full Marks : 70

The figures in the margin indicate full marks.
Candidates are required to give their answers in their own words as far as practicable.

Answer any five questions.
$5 \times 14=70$

1. a) What are meant by 'lexeme' and 'token' ?
b) Give regular expressions for the following languages on $\Sigma=\{a, b\}$:
i) All strings containing at least one ' b '
ii) All strings containing at least two ' a '.
c) Convert the following regular expression to NFA :

$$
(\mathrm{a} \mid \mathrm{b}) \mathrm{a} * \mathrm{~b} *
$$

d) Convert the NFA to DFA and minimize the DFA.

$$
2+2+2+8
$$

2. a) What is meant by 'terminal' and 'non-terminal' in a context free grammar ?

CS/M.Tech (SE, CSE)/SEM-2/PGSE-203, PGCSE-204A/2013
b) Eliminate Left Recursion in the following grammar

$$
\begin{aligned}
& S \rightarrow a|\uparrow|(T) \mid T \\
& T \rightarrow T, S|a| \uparrow \mid(T)
\end{aligned}
$$

c) Test ambiguity in the following grammar :

$$
s \rightarrow+s s|-s s| a
$$

d) Consider the following grammar :
$S \rightarrow L=R \mid R$
$L \rightarrow * R \mid i d$
$R \rightarrow L$
i) Construct a predictive parse table for the above mentioned grammar.
ii) Show the actions of the parser for the input string
"id = *id" $2+2+2+8$
3. a) Show the shift-reduce conflict in SLR parsing table for the following grammar :
$S \rightarrow$ iCts
$S \rightarrow$ iCtSeS
$S \rightarrow a$
C \rightarrow e
b) Test whether the CLR parser can resolve the conflict.

CS/M.Tech (SE, CSE)/SEM-2/PGSE-203, PGCSE-204A/2013
4. a) Construct the operator precedence parsing table for the following grammar :

$\exp \rightarrow \exp +\exp \left|\exp { }^{*} \exp \right|(e x p)|i d| a$
b) Consider the sentence id*id + id for parsing and show the parsing action.
$9+5$
5. a) What is the type expression for "int [2] [3]"?
b) Write SDD for the following grammar and show the dependency graph for "int [2] [3]":
$\mathrm{T} \rightarrow \mathrm{BC}$
$B \rightarrow$ int

B \rightarrow float
$C \rightarrow$ [num $]_{1}$
$\mathrm{C} \rightarrow \mathrm{E}$
c) Write SDD for the following grammar and show the dependency graph for "a $-b+5$ "
$\mathrm{E} \rightarrow \mathrm{TE}^{\prime}$
$\mathrm{E}^{\prime} \rightarrow+\mathrm{TE}^{\prime}$
$\mathrm{E}^{\prime} \rightarrow-\mathrm{TE}_{1}{ }^{\prime}$
$E^{\prime} \rightarrow-E$
$T \rightarrow(E)$
$T \rightarrow i d$
$T \rightarrow$ num

CS/M.Tech (SE, CSE)/SEM-2/PGSE-203, PGCSE-204A/2013
6. a) Write three address code for the following source code
while ($x<y$) \{

$z=5 ;$ for $(a=0 ; a<=10 ; a++)$ \{
if $(c<d) k=1$; else $k=2$;
\}
\}
b) Generate code for the following expression using labelled tree DAG.

$$
(a-b) *(a-c-b)+(a-b-c) \quad 7+7
$$

7. Write short notes on any two of the following : $7+7$
a) Symbol table
b) LALR parsing
c) Register allocation problem
d) Predictive parsing.
