	Utech
Name:	
Roll No.:	To Opening State Confident
Invigilator's Signature :	

CS/M.Tech (CSE)/SEM-2/CST-1202B2/2011 2011

IMAGE PROCESSING & COMPUTER VISION

Time Allotted: 3 Hours Full Marks: 70

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

GROUP - A

(Objective Type Questions)

- 1. Answer in *Yes* or *No* for the following:
- $10 \times 1 = 10$
- a) Image acquisition cannot be done without help of a camera.
- b) Total number of gray levels is always factored by 3.
- c) Non-linear operators like *n*th root or *n*th power are never used in image enhancement.
- d) Histogram equalization is a linear process.
- e) Median filtering is a frequency domain filtering.
- f) Multiplication in frequency domain is equivalent to convolution in spatial domain.
- g) Low-pass filters tend to blur images.

30001 (M.Tech)

[Turn over

CS/M.Tech (CSE)/SEM-2/CST-1202B2/2011

- h) Hadamard transform is a technique for error free image compression.
- A high-pass filter is called smoothing frequency domain filter.
- j) Histogram matching is a process used to compress the image.

GROUP - B

(Short Answer Type Questions)

Answer any *three* of the following. $3 \times 5 = 15$

- 2. Explain how from a continuous image a digital image is formed by sampling and quantization. Explain how many bits will be required to store an $M \times N$ digital image.
- Explain with example what is convolution of two onedimensional functions. Explain how and why it is used for filtering.
- 4. What is a separable median filter? Propose a fast technique for producing median for a separable median filter as the centre of neighbourhood moves from pixel to pixel.
- 5. Explain how Huffman coding is done. Find Huffman code for a source with seven symbols a_1 , a_2 , a_3 , a_4 , a_5 , a_6 , a_7 with respective probabilities 0.1, 0.25, 0.06, 0.1, 0.04, 0.15, 0.3.
- 6. Explain how to find the resultant of two images after arithmetic and logical operation. A & B are two one-dimensional images and are given by $A = [2\ 3\ 7\ 6]$ and $B = [3\ 2\ 4]$, find A/B, A B, $A \lor B$, $A \land B$.

GROUP - C

(Long Answer Type Questions)

Answer any *three* of the following.

 $3 \times 15 = 45$

- 7. a) What are different neighbours of a pixel? Explain $N_4(p)$, $N_D(p)$, $N_8(p)$. Write down the criteria a distance measure should satisfy. Explain what are Euclidean, D_4 (City Block) and D_8 (Chess Board) distance measures. Show that they satisfy the criteria for distance measure.
 - b) Explain how histogram statistics could be used for image enhancement.
- 8. a) Write the expressions for first and second derivatives for digital domain. Write the properties that they should satisfy. Show with an example their efficacy in image sharpening. Explain how a Laplacian is used to sharpen an image. In this context explain Unsharp masking and High Boost filtering.
 - b) Write down the expression for DFT & inverse DFT in one-dimension. If f(k) is a function, at what point do we sample the function to get f(k), if the sampling distance is Δx ? What is the relationship between Δx and Δu ? Show that if we multiply f(x) by $(-1)^x$ before taking DFT then DFT shifts by M/2 points. For a constant function (with value A) for k points (k < M) what is the DFT? What is the DFT if the constant function (value A) is over 2k points (2k < M). In both cases draw DFTs and explain them.

CS/M.Tech (CSE)/SEM-2/CST-1202B2/2011

- 9. a) Explain the steps that are performed to filter a function f(x, y) in the frequency domain.
 - b) Briefly explain ideal high-pass filter. What are its shortcomings? How are these shortcomings overcome in Butterworth or Gaussian high-pass filters?
 - c) Explain what is Hadamard Transform. Explain with example what are advantages of Hadamard Transform.
 Write down properties of Hadamard Transform.
- 10. a) Explain with example what is coding redundancy. Explain inter-pixel and psycho-visual redundancy. 5
 - Show with a block diagram, how a compression system will look like. Explain Hamming's technique for channel coding.
 - c) Write down basis vectors of DCT and Harr Transforms for a 4×4 transformation.
- 11. Write short notes on any *two* of the following : $2 \times 7^{\frac{1}{2}}$
 - a) Image enhancement by histogram equalization
 - b) Hough transform
 - c) Recognition of objects by moments.

30001 (M.Tech)