	<u>Unedh</u>
Name :	(4)
Roll No.:	An Alasman Of Commission 2 and Experience
Inviailator's Sianature:	

CS/M.TECH(CSE)/SEM-2/MTCSE-242/2012

2012 AI & SOFT COMPUTING

Time Allotted: 3 Hours Full Marks: 70

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

GROUP - A

Answer any five questions of the following.

 $5 \times 5 = 25$

5

- 1. a) Define 'Soft Computing'. How does it differ from traditional 'hard computing'?
 - b) Critically comments, 'Linear independence implies linear separability, but reverse is not true'. 3 + 2
- 2. a) What do you mean by supervised, reinforcement and unsupervised learning rules?
 - o) State the Delta learning rule. 4 + 1
- 3. What do you mean by Fuzzy Logic ? How is it different from classical logic ?
 - Explain with suitable example.
- 4. Compare and contrast hill climbing and best-first search procedures. 5

30418(M.Tech) [Turn over

CS/M.TECH(CSE)/SEM-2/MTCSE-242/2012

- 5. a) What is perception?
 - b) Define intelligent agent. Explain different types of environment related to intelligent agent.
 - c) How procedural knowledge differs from declarative knowledge? 1 + 2 + 2
- 6. Write a program in prolog or lisp to find the gcd of two numbers.
- 7. What is expert system? Why is it required? 2 + 3

GROUP - B

(Answer any three questions from the following)

 $3 \times 15 = 45$

8. Given a game tree for a two-ply game, where the evaluation functions for winding are given at the leaf nodes. Assume that the game is opened by the maximize.

- a) Using Minimax algorithm, determine which nodes the maximizer and the minimizer should select in their first turn.
- b) Identify the nodes that will be pruned by invoking Alpha-Beta algorithms. 8 + 7

30418(M.Tech)

- 9. a) Given two jugs with no measuring marker a 4 gallon jug and a 3 gallon jug. There is a pump to fill the jug with water. How do you get exactly 2 gallons of water in the 4 gallon jug? Give the state space for the problem, describe the production rules and give a possible solution.
 - b) Give the following initial and the goal state for the Block's world problem. Construct a set of operators (rules) and hence generate a plan to reach the goal state from the initial state.

Initial State: On (C, A)

Clear (C),

On (B, Table),

Clear (B),

Goal State: On (B, A)

(6 + 3) + 6

- 10. a) Briefly discuss about linearly separable problem and the solution for XOR problem.
 - Also suggest a network that can solve XOR problem.
 - b) Explain the Back Propagation algorithm and derive the expressions for weight up-date relations for multi-layer feed forward networks using differential activation function.
 - c) On what basis is the number of hidden layers and the number of neurons in each hidden layer selected.

$$(2+4)+7+2$$

- 11. a) Design network of McCulloch-Pitts neurons that implement logical NOT gate. Draw the network and label all the weight and threshold values.
 - b) Discuss the learning process of Hebb's net. Consider the Hebbian learning rule for an ANN with a single PE which is LTU. There are four inputs and corresponding weights to this PE. Consider four input vectors:

$$X^{(1)} = (1, 1.5, 0.5, 0)^T, X^{(2)} = (-0.5, 1, 0, 1.5)^T,$$

$$X^{(3)} = (-1, 0, -1, -0.5)^T, X^{(4)} = (-1, -0.5, 0, 1)^T$$

The initial weight vector is selected as,

$$W^{(1)} = (1, 0, -1, 0)^T$$
 and $\eta = 1$.

- c) Critically comment, "Delta learning rule is better than Perceptron learning rule" 5 + (2 + 5) + 3
- 12. a) Explain the cycle of Genetic algorithm.
 - b) Explain Cross-over and Mutation operations of Genetic algorithm.
 - c) Discuss Roulette Wheel Selection to create new offspring to select the best chromosomes.
 - d) Let's suppose two fuzzy sets A & B are defined as follows:

$$A = \{(3, 0.5), (5, 1), (7, 0.6)\}, B = \{(3, 1), (5, 0.6)\}$$

Now find $A \times B$, A + B, A.B, $A \oplus B$.

2 + 5 + 4 + 4