	Utech
Name :	
Roll No.:	To Character (y Exercisings State Exercises)
Invigilator's Signature :	

CS/M.Tech (CSE)/SEM-2/MCS-204D/2013 2013

AI & NEURAL NETWORK

Time Allotted: 3 Hours Full Marks: 70

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

Answer Question No. 1 and any three from the rest.

- 1. a) Prove that the statement $((\sim P \lor Q)) = (P \to Q)$ is valid.
 - b) How multiplayer perceptron solves an XOR problem?
 - c) Consider the following definition :
 - "Persons of age 15 to 40, 30 to 60, 50 to 75 are known as young, middle-aged, old respectively." Now construct the membership graph and membership functions for linguistic variables young, middle-aged and old.
 - d) "Clustering is an unsupervised leaning and classification is supervised leaning" justify it. 4×4
- 2. a) Consider the following problem:

You are given two jugs, a 4 gallon and a 3 gallon. Neither have any measuring markers on it. There is pump that can be used to fill the jugs with water. How can you get exactly 2 gallons of water into the 4 gallon jug? Solve the problem using the construction of production rules.

30153 (M.Tech)

[Turn over

CS/M.Tech (CSE)/SEM-2/MCS-204D/2013

- c) What are the representations of Modus ponens and modus tollens? 8+6+4
- 3. a) Discuss the organization of an expert system. State the differences between expert system and conventional methods. What are different types of errors in the development stage of expert systems.
 - b) Discuss AO^* algorithm with a suitable example. Make a comparison between depth first research and breadth first search. (4+3+3)+(5+3)
- 4. a) State the back-propagation algorithm for multiplayer feed-forward neural network with proper mathematical notation.
 - b) State different types of leaning mechanism with proper example.
 - c) Consider a gene HBB whose normal and diseased replications are given below:

Normal state	Diseased state
4	12
6	13
9	12
7	15

Compute the t-value of gene HBB and measure its level of significance :

t-table:

Degree of freedom	P = 0·1	P = 0.05	P = 0.01	P = 0.001
6	1.94	2.45	3.71	5.96

7 + 6 + 5

5. Let's look at an example based on the experimental result of Roth-cancer research lab. The table consists of 14 genes with 3 attributes (viz., GO attributes, Expression level and Pesudo gene found) and one class label: cancer mediating. Finding out the test attribute and draw the decision tree. Generate the rules from decision tree.

Gene-ID	GO attributes	Expression level	Pseudo gene found	Class label : Cancer mediating
<i>g</i> 1	⇔ 30	High	No	No
g2	⇔ 30	High	No	No
g3	31 40	High	No	Yes
g4	> 40	Medium	No	Yes
g5	> 40	Low	Yes	Yes
<i>g</i> 6	> 40	Low	Yes	No
<i>g</i> 7	31 40	Low	Yes	Yes
<i>g</i> 8	⇔ 30	Medium	No	No
<i>g</i> 9	⇔ 30	Low	Yes	Yes
g10	> 40	Medium	Yes	Yes
<i>g</i> 11	⇔ 30	Medium	Yes	Yes
g12	31 40	Medium	No	Yes
g13	31 40	High	Yes	Yes
g14	> 40	Medium	No	No

10 + 4 + 4

CS/M.Tech (CSE)/SEM-2/MCS-204D/2013

- 6. Write short notes on the following :
 - a) K-SOM
 - b) ADALINE-Neural Network Model
 - c) Linear regression in prediction
 - d) RBF Neural Network Model.

