Name :
 Roll No. :
 \qquad roman Invigilator's Signature :
 \qquad

 viech
 CS/M.Tech (CSE)/SEM-2/PGCS-201/2012 2012
 ADVANCED MATHEMATICS

Time Allotted : 3 Hours
Full Marks : 70

The figures in the margin indicate full marks.
Candidates are required to give their answers in their own words as far as practicable.

$$
\text { Answer any five questions. } \quad 5 \times 14=70
$$

1. a) If the vector field \vec{F} is conservative, then show that there exist a single valued differentiable scalar function ϕ such that \vec{F} is the gradient of ϕ.
b) If $\vec{\nabla}=2 x y z^{3} \vec{i}+x^{2} z^{3} \vec{j}+3 x^{2} y z^{2} \vec{k}+10 \vec{j}$, find $\phi(x, y, z)$ such that $\phi(1,-2,2)=4$. 7
2. a) Show that $\vec{A}=\left(6 x y+z^{3}\right) \vec{i}+\left(3 x^{2}-z\right) \vec{j}+\left(3 x z^{2}-y\right) \vec{k}$ is irrotational. Find a scalar function ϕ such that $\vec{A}=\vec{\nabla} \phi$.
b) Evaluate $\oint_{c}[(3 x+4 y) \mathrm{d} x+(2 a-3 y) \mathrm{d} y]$ where c is a circle of radius is 2 and centre at (0,0) on the $x y$-plane.

CS / M.Tech (CSE)/SEM-2/PGCS-201/2012

b) If $A=\frac{1}{3}\left[\begin{array}{rrr}1 & 2 & 2 \\ 2 & 1 & -2 \\ -2 & 2 & -1\end{array}\right]$, prove that $A^{-1}=A^{T}$.
c) Examine the consistency of the following system of equations and solve, when possible :
$x+2 y-z=10$
$x-y-2 z=-2$
$2 x+y-3 z=8$
4. a) Show that the matrix $A=\left[\begin{array}{rrr}1 & 2 & 3 \\ 3 & -2 & 1 \\ 4 & 2 & 1\end{array}\right]$ satisfy its characteristic equation. Hence find its inverse. $3+4$
b) Find the eigenvalues and corresponding vectors of the matrix : 7

$$
\left[\begin{array}{ccc}
-3 & 1 & -1 \\
-7 & 5 & -1 \\
-6 & 6 & -2
\end{array}\right]
$$

b) Solve using Laplace transform :

$$
\begin{equation*}
y^{\prime \prime}(t)+y(t)=8 \cos t, y(0)=1, y^{\prime}(0)=-1 . \tag{7}
\end{equation*}
$$

6. a) Find the Fourier sine transform of $e^{-|x|}$. Hence show

$$
\text { that } \int_{0}^{\infty} \frac{x \sin m x}{1+x^{2}} \mathrm{~d} x=\frac{\pi e^{-m}}{2}, m>0
$$

b) Solve the equation :

$$
\begin{equation*}
\left(D^{2}+\frac{1}{x} D\right) y=\frac{12 \log x}{x^{2}} \tag{7}
\end{equation*}
$$

7. a) Solve the equation $\frac{\partial^{2} u}{\partial t^{2}}=c^{2} \frac{\partial^{2} u}{\partial u^{2}}$, given that

$$
\begin{align*}
& u(0, t)=u(l, t)=0 . u(x, 0)=f(x) \text { and } \\
& \frac{\partial u}{\partial t}(x, 0)=0,0<x<\lambda . \tag{7}
\end{align*}
$$

b) Six coins are tossed 6400 times. Using Poisson distribution find the approximate probability of getting six heads 8 times. 7

