	(Uffech)
<i>Name</i> :	A
Roll No.:	In Annual (NY Encycleder 2nd Excellent
Invigilator's Signature:	

CS/M.Tech(CSE)/SEM-2/MCSE-203/2010 2010

ADVANCED DATABASE MANAGEMENT SYSTEMS

Time Allotted: 3 Hours Full Marks: 70

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

GROUP - A

(Multiple Choice Type Questions)

- 1. Choose the correct alternatives for the following: $10 \times 1 = 10$
 - i) Which one of the following is a trivial dependency?
 - a) $AB \varnothing A$
- b) $A \varnothing A$
- c) Both (a) and (b)
- d) None of these.
- ii) A table can be logically connected to another table by defining a
 - a) hyperlink
- b) common field
- c) primary key
- d) foreign key.
- iii) F covers E implies
 - a) every FD in E also in F+
 - b) every FD of F also in E+
 - c) both (a) and (b)
 - d) none of these.

30293 (M.Tech)

[Turn over

CS/M.Tech(CSE)/SEM-2/MCSE-203/2010

- iv) The relation R = (ABC) and set of functional dependencies F = { A \varnothing B, B \varnothing C }. R is decomposed in two different ways R1 = (AB), R2 = (BC). This is
 - a) loss-less join decomposition
 - b) dependency preserving
 - c) both (a) and (b)
 - d) none of these.
- v) The steps of ARIES recovery algorithm are
 - a) analysis
- b) redo

c) undo

- d) all of these.
- vi) Autonomy refers to the distribution of
 - a) data b)

control

- c) function
- d) none of these.
- vii) The condition which must be followed while defining horizontal fragmentation is
 - a) completeness
- b) reconstruction
- c) disjointness
- d) all of these.
- viii) Join graph is used in
 - a) primary horizontal fragmentation
 - b) vertical fragmentation
 - c) derived fragmentation
 - d) all of these.

- ix) The query optimizer acts as
 - a) access path selector
 - b) to manage local database remains constant
 - c) interpret user command
 - d) all of these.
- x) Distributed database is basically placement of
 - a) data and function
- b) data and program
- c) program and control
- d) data and control.

GROUP - B

(Short Answer Type Questions)

Answer any *three* of the following.

 $3 \times 5 = 15$

- 2. Draw an extended ER diagram of your own college.
- 3. a) Why is normalization needed?
 - b) What are the anomalies of a relation?
- 4. Consider the following schema:

Suppliers (sid,sname,addres)

Parts (pid,pname,color)

Catalog (sid,pid,cost)

State what the following queries compute:

- a) π sname (π sid (σ color=red Parts) Suppliers)
- b) π sname (π sid ((σ color=red Parts)) Suppliers)

- 5. Explain 3-phase commit protocol. Why is it non-blocking
- 6. What are local, global and external schema? What is multidatabase system?

GROUP - C

(Long Answer Type Questions)

Answer any *three* of the following. $3 \times 15 = 45$

Consider a relation R (A B C D E F G H I J) and the FDs are given as

 $F = \{AB \varnothing C, A \varnothing DE, B \varnothing F, F \varnothing GH, D \varnothing IJ \}$

Find out the candidate key and also the super key set.

b) Write down the general algorithm for finding out the candidate key.

Consider Student (USN, Name) with FDs F = { USN \varnothing Name, Name \varnothing USN }. Find out the candidate key.

c) Who are the users of DBMS?

7 + 7 + 1

8. a) Suppose that we decompose the schema

R = (A, B, C, D, E) into

(ABC)

7.

a)

(ADE).

Show that the decomposition is lossles decomposition if the following set F of functional dependencies holds :

 $A \varnothing BC$

 $CD \varnothing E$

 $B \varnothing D$

 $E \varnothing A$

b) Find out the canonical cover of the following relation $R \ (ABC)$ with FDs

A Ø BC

 $B \varnothing C$

 $A \varnothing B$

 $AB \varnothing C$

c) Why is relational algebra needed?

7 + 7 +

9. a) What is view serializability? Consider the schedule.

Test whether they are conflict serializable schedule or not

T1			T2
	Read(A)		
	Write(A)		
		Read(A)	
		Write(A)	
	Read(B)		
	Write(B)		
		Read(B)	
		Write(B)	

- b) What are immediate and deferred updates in a log based recovery? Explain with diagram.
- c) Draw the state transaction diagram and explain.

5 + 5 + 5

- 10. a) What are the methods to prevent unauthorized access in distributed database?
 - b) Explain the concurrency control mechanisms.
 - c) Suppose that 2 PC with presumed is used as commit protocol. Explain how the system recovers from failure and deals with a particular transaction *T* in each of the following cases :

- i) A subordinate site for T fails before receiving a prepare T message.
- ii) A subordinate site for T fails after receiving a prepare message but before making a decision.
- iii) A subordinate site for T fails after receiving a prepare message and force writing an abort log record but before responding to the prepare message.
- iv) A subordinate site for *T* fails after receiving a prepare message and force writing a prepare log record but before responding to the prepare message.
- v) A subordinate site for T fails after receiving a prepare message and force writing an abort log record and sending a no vote.
- vi) The coordinator of site T fails before sending a prepare message.
- vii) The coordinator of site T fails after sending a prepare message but before collecting all votes.
- viii) The coordinator of site *T* fails after writing an abort log record but before sending any further message to its subordinates.
- ix) The coordinator of site T fails after writing a commit log record but before sending any further message to its subordinates.

CS/M.Tech(CSE)/SEM-2/MCSE 203/2010

- x) The coordinator of site T fails after writing an end log record. $2\frac{1}{2} + 2\frac{1}{2} + 10$
- 11. a) What do you mean by local mapping transparency and replication transparency?
 - b) Consider the following global fragmentation and allocation schemata:

Global Schema: STUDENT (ROLL, NAME, DEPT)

Fragmentation Schema : STUDENT $_{1}$ = SL $_{DEPT = "IT"}$

STUDENT

 $STUDENT_2 = SL_{DEPT = "CS"}$

STUDENT

Allocation Schema: STUDENT 1 at sites 1, 2

STUDENT₂ at sites 3, 4

(Assume that "IT" and "CS" are the only possible values for DEPT attribute)

- i) Write an application that requires the roll number of student from terminal and outputs the name and department, at levels 1, 2 and 3 of transparency.
- ii) Write an application that moves the student having roll number 432 from department "IT" to department "CS", at levels 1, 2 and 3 of transparency. 5 + (5 + 5)