	Utech
Name :	
Roll No. :	To Open (y Executing 2nd Explored
Invigilator's Signature :	

ADVANCED COMPUTER ARCHITECTURE

Time Allotted: 3 Hours Full Marks: 70

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

Answer Question No. 1 and any five from the rest.

- 1. Answer any *ten* of the following briefly: $10 \times 2 = 20$
 - i) Compare and contrast between byte addressing and word addressing.
 - ii) Critically comment: "In MIPS architecture arithmetic operands are registers, not memory".
 - iii) With proper example brief on the role of "zero" register in MIPS processor.
 - iv) Critically comment : "Assembly can provide pseudo instructions".
 - v) With proper example show the operation of "beq" in MIPS.

30224 (M.Tech)

[Turn over

- vi) Define the term "CPU time" for a given instance of a program.
- vii) Explain the role of state registers between the pipeline stages.
- viii) Explain the difficulty faced in increasing the clock speed of processors to enhance their performance.
- ix) What do you mean by dynamic and static power of hardware circuits?
- x) State the key difference between vector-register processors and memory-memory vector processors.
- xi) What do you mean by dual-port memory?
- xii) What do you mean by space power trade-off in modern processor architectures?
- 2. a) Discuss in brief on the '*R*-Type', '*I*-Type' and '*J*-Type' instructions of MIPS processor.
 - b) With proper example show how a 32 bit constant can be loaded into an MIPS register. 7 + 3
- Discuss briefly with suitable examples the various addressing modes available in an MIPS processor.

- 4. a) Briefly describe the key components of a pipelined MIPS data path.
 - b) State any two advantages of pipelined MIPS data path over single cycle MIPS data path. 8+2
- 5. a) What do you mean by structural hazard in a pipelined architecture? State the probable causes of structural hazard and their respective measures as practised in a pipelined MIPS architecture.
 - b) State the probable causes of data hazard in a pipelined MIPS architecture. (2+4)+4
- 6. a) Discuss briefly with proper examples the following data dependencies as found between the code instructions :
 - i) Read after Write
 - ii) Write after Read
 - iii) Write after Write.
 - b) State with proper example how loop unrolling helps to increase the throughput of a processor. 3 + 7

- 7. a) Discuss briefly on the key architectural components of a vector processor.
 - b) What do you mean by 'stride' ? State its use in vector processor. 5+5
- 8. a) Discuss with proper illustrations the arrangement of the cores in a multi-core CPU chip.
 - b) Compare the features of multi-core processor architecture with SMT processors. 4+6