	<u>Uiegh</u>
Name:	A
Roll No.:	~ ~
Inviailator's Signature :	

CS/M.TECH(CSE)/SEM-2/MTCSE-22/2012

2012 ADVANCED ALGORITHM ANALYSIS

Time Allotted: 3 Hours Full Marks: 70

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

GROUP - A

Answer any *five* questions from the following $5 \times 5 = 25$

- 1. a) Compare and contrast Divide-and-Conquer technique and Dynamic-Programming technique.
 - b) Compare and contrast Dynamic programming and greedy method of problem solving. 3 + 2
- 3. Find out the longest common subsequence for "HUMAN" and "CHIMPANZEE" using dynamic programming technique. 5
- 4. Explain and write Huffman coding algorithm. Discuss the applications of Huffman coding. Construct Huffman codes for the following data:

Data	A	В	С	D	E
Frequency	24	12	10	8	8

2 + 1 + 2

30414(M-Tech) [Turn over

CS/M.TECH(CSE)/SEM-2/MTCSE-22/2012

- 5. Explain that quick sort works as worst case for data which is already sorted. Write the algorithm also. 3 + 2
- 6. Write a non-deterministic algorithm for sorting data. 5
- 7. Explain graph traversal techniques. Discuss the applications of DFS and BFS traversals. 3 + 2

GROUP - B

Answer any three questions from the following.

$$3 \times 15 = 45$$

- 8. a) What is P, NP and NPC?
 - b) Prove that CNF satisfiability α clique decision problem.
 - c) Write a non-deterministic algorithm for clique decision problem. 3 + 6 + 6
- a) Find the shortest path from node 1 to every other node in the given graph below using Bellman Ford algorithm.
 Write the algorithm and analyze it.

30414(M-Tech)

- b) Explain and write the greedy method of solving fractional knapsack problem.
- c) Optimize the knapsack of capacity 10 to be filled by 4 objects of following specifications:

	1	2	3	4
Profit	10	40	30	50
Weight	5	4	6	3

(4 + 4) + 4 + 3

- 10. a) Working modulo q=11 how many spurious hits does the Rabin-Karp matcher encounter in the text T=3141592653589793, when looking for the pattern P=26.
 - b) Write the Rabin-Karp algorithm for string matching.

5 + 10

- 11. a) Explain, how the product of two polynomials of degree bound n can be computed in time θ ($n\log n$) with both the input and output representations in coefficient form.
 - b) Give a branch and bound schema for 15-Puzzle problem. 7+8
- 12. Write and explain the algorithm for matrix chain multiplication problem. Multiply the sequence of A1(10 X 100), A2 (100 X 5), A3 (5 X 50), A4 (50 X 1) matrix.

8 + 7