
 Uies
 Name :
 Roll No.
 \qquad
 \qquad
 CS/M.Tech(CSE)/SEM-1/PGCS-104/2009-10 2009 OPERATING SYSTEM

Time Allotted : 3 Hours
Full Marks : 70

The figures in the margin indicate full marks.
Candidates are required to give their answers in their own words as far as practicable.

$$
\text { Answer any seven questions. } \quad 7 \times 10=70
$$

1. Answer any five questions :
$5 \times 2=10$
a) Is a non-pre-emptive scheduling algorithm a good choice for an interactive system ? Briefly explain.
b) In what way is shortest-job-first scheduling just a particular form of priority scheduling?
c) Round-Robin scheduling behaves differently depending on its time quantum. Can the time quantum be set to make round-robin behave the same as any of the following algorithms ? If so, how ?
i) First-come first-served
ii) Shortest job first.
d) On a system with n CPUs, what is the maximum number of processes that can be in the ready, run and blocked states?

CS/M.Tech(CSE)/SEM-1/PGCS-104/2009-10
e) On a simple paging system with 2^{24} bytes of aphysical memory, 256 pages of logical memory and a page size of $2{ }^{10}$ bytes, how many bytes are in a page frame?
f) What is the principal disadvantage of too much multiprogramming?
2. a) What are the three criteria to be satisfied to design a protocol to solve critical section problem ? 3
b) Write a solution for Readers Writers Problem. 7
3. a) What do you mean by external and internal fragmentations?
b) How is logical address translated to physical address in paging scheme?
4. a) Explain in brief the process state transition diagram. 4
b) What are the differences between user level thread and kernel supported thread? 4
c) What is the function of CPU-scheduler ? 2
5. Given references to the following pages by a program :
$0,3,0,1,8,1,8,7,8,7,1,2,8,2,7,8$
How many page faults will occur if the program has three page frames available to it and uses the following ?
a) FIFO Algorithm
b) LRU Algorithm
c) Optimal Algorithm.
6. a) Consider the following snapshot of a system

Answer the following questions using the banker's algorithm :
i) What is the content of the matrix need ?
ii) Is the system in a safe state?
iii) If a request from process P_{1} arrives for
($0,4,2,0$) can the request be granted immediately?
7. For the processes listed below, draw Gantt chart and calculate average waiting time and average turn-around-time :

Process

A
B
C
D

Arrival time
0.000
1.001
4.001
6.001

Burst time
3
6
4
2
using :
a) FCFS
b) Shortest job first (pre-emptive)
c) Shortest job first (non-pre-emptive)
d) Round-Robin.

$$
4 \times 2 \frac{1}{2}
$$

8. What is monitor ? Write a solution for Dining Philasopher's problem.
9. a) Assume that the amount of memory on a system is inversely proportional to the page fault rate. Each time memory doubles, the page fault rate is cut in half. Currently the system has 32 Mb of memory. When a page fault occurs, the average access time is 1 ms , $1 \mu s$ otherwise. Overall, the effective access time is $300 \mu \mathrm{~s}$. How much additional memory would be needed to cut the effective access time to 100μ s ? Assume that the total memory in the system must be a power of 2 .
b) Explain in brief demand paging.
10. Write short notes on any two of the following :
a) Swapping
b) Realtime systems
c) Thrashing
d) Segmentation.
