	Unech
Name :	
Roll No.:	To deposit (by Executing and Explaint
Inviailator's Sianature :	

OPERATING SYSTEM

Time Allotted: 3 Hours Full Marks: 70

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

Answer any seven questions. $7 \times 10 = 70$

1. Answer any *five* questions :

 $5 \times 2 = 10$

- a) Is a non-pre-emptive scheduling algorithm a good choice for an interactive system? Briefly explain.
- b) In what way is shortest-job-first scheduling just a particular form of priority scheduling?
- c) Round-Robin scheduling behaves differently depending on its time quantum. Can the time quantum be set to make round-robin behave the same as any of the following algorithms? If so, how?
 - i) First-come first-served
 - ii) Shortest job first.
- d) On a system with n CPUs, what is the maximum number of processes that can be in the ready, run and blocked states?

920434 [Turn over

- e) On a simple paging system with 2^{24} bytes of physical memory, 256 pages of logical memory and a page size of 2^{10} bytes, how many bytes are in a page frame?
- f) What is the principal disadvantage of too much multiprogramming?
- 2. a) What are the three criteria to be satisfied to design a protocol to solve critical section problem?
 - b) Write a solution for Readers Writers Problem. 7
- 3. a) What do you mean by external and internal fragmentations?
 - b) How is logical address translated to physical address in paging scheme?6
- 4. a) Explain in brief the process state transition diagram. 4
 - b) What are the differences between user level thread and kernel supported thread?
 - c) What is the function of CPU-scheduler?
- 5. Given references to the following pages by a program :

$$0, 3, 0, 1, 8, 1, 8, 7, 8, 7, 1, 2, 8, 2, 7, 8$$

How many page faults will occur if the program has three page frames available to it and uses the following?

- a) FIFO Algorithm
- b) LRU Algorithm
- c) Optimal Algorithm.

6. a) Consider the following snapshot of a system :

	Allocation			Max				Available					
	\boldsymbol{A}	В	\boldsymbol{C}	D	\boldsymbol{A}	В	C	D	\boldsymbol{A}	В	\boldsymbol{C}	D	
P_0	0	0	1	2	0	0	1	2	1	5	2	0	
P_{1}	1	0	0	0	1	7	5	0					
P_2	1	3	5	4	2	3	5	6					
P_3	0	6	3	2	0	6	5	2					
P_4	0	0	1	4	0	6	5	6					

Answer the following questions using the banker's algorithm :

- i) What is the content of the matrix need?
- ii) Is the system in a safe state?
- iii) If a request from process P_1 arrives for (0, 4, 2, 0) can the request be granted immediately? 2+3+2
- b) Explain the circular wait condition for deadlock. 3
- 7. For the processes listed below, draw Gantt chart and calculate average waiting time and average turn-around-time :

Process	Arrival time	Burst time
A	0.000	3
В	1.001	6
C	4.001	4
D	6.001	2

using:

- a) FCFS
- b) Shortest job first (pre-emptive)
- c) Shortest job first (non-pre-emptive)
- d) Round-Robin.

$$4 \times 2\frac{1}{2}$$

- 8. What is monitor? Write a solution for Dining Philosopher's problem.
- 9. a) Assume that the amount of memory on a system is inversely proportional to the page fault rate. Each time memory doubles, the page fault rate is cut in half. Currently the system has 32 Mb of memory. When a page fault occurs, the average access time is 1 ms, 1 μ s otherwise. Overall, the effective access time is 300 μ s. How much additional memory would be needed to cut the effective access time to 100 μ s? Assume that the total memory in the system must be a power of 2.

6

b) Explain in brief demand paging.

4

10. Write short notes on any *two* of the following :

 2×5

- a) Swapping
- b) Realtime systems
- c) Thrashing
- d) Segmentation.

920434