
 viresh
 Name :
 Roll No. :

 Invigilator's Signature :
 CS/M. Tech (CSE)/SEM-1/CSEM-104/2011-12 2011 ADVANCED PROGRAMMING AND PROBLEM SOLVING

Time Allotted: 3 Hours
Full Marks : 70

The figures in the margin indicate full marks.
Candidates are required to give their answers in their own words as far as practicable.

Answer any two questions from Group-A and three questions form Group-B

GROUP - A

Answer any two questions.

$$
2 \times 14=28
$$

1. a) Define a class. How does it accomplish data hiding ?
b) When do we declare a member of a class static ? Give Example.
c) What is a parameterized constructor ? Explain with an example.
d) Can we have more than one constructors in a class ? If yes, explain the need for such a situation with suitable example.
e) What do you mean by friend function ? What is the significance of declaring a function as friend ? Give example.
$(2+2)+2+2+(1+2)+(1+2)$
2. a) Determine what the following recursive function computes. Write an iterative function in Cto accomplish the same purpose.
```
( int func ( int n )
    {
        if ( }n==0
            Return (0);
                return ( }n+\mathrm{ func ( }n-1)\mathrm{ );
    }
```

b) Write an iterative function in C to evaluate $a * b$ by using addition, where $a \& b$ are two non-negative integers.
c) Define a recursive procedure. Write a recursive function $\operatorname{GCD}(x, y)$ in C that implements the division algorithm to compute GCD of two integers $x \& y$.

Rewrite this function in iterative form.

$$
(2+3)+3+(2+2+2)
$$

3. a) The ' C ' in built function "strtok" works in the following manner :

$$
\begin{aligned}
& \text { /* usage of of "strtok"*/ } \\
& \text { char* first = strtok (mystring, ":"); } \\
& \text { while (first }=\text { strtok (NULL, ":")) } \\
& \quad \text { print ("\%s", first); }
\end{aligned}
$$

For an input to mystring = "Arindam : $40: 500: 57 ">$ output will be respectively "Arindam" "40" "500" "5’77" "

Implement a function "my-strtok" which has similar semantics as the in built function "strtok".


```
    a=5; P}=\mathrm{ fun ();
    printf ("%d\n", a);
    printf ("*P is = %d\n", *P);
    return & a ;
}
}
i) What will be the output to the above code ? Why ?
ii) The Code inside fun () is changed as follows :
int * fun () \{
int * a;
*a = malloc ( sizeof (int));
printf ("a is = \%d"; *a);
returna;
What will be that changed output \&why ? \(6+(4+4)\)
4. a) class Parent \{
Public :
Parent () \(\}\)
~Parent () \{cout << "I am parent destructor" <<endl; \}
\};
/ /=============================
class Child: public Parent \{
public:
Child() \{\}
~Child() \{ cout<< "I am child destructor" <<endl; \}
\};
```


Parent *p [2];
Parent *pl = new Parent;
Child *cl = new Child;
$\mathrm{p}[0]=\mathrm{pl}$;
$\mathrm{p}[1]=\mathrm{cl}$;
for (int $\mathrm{i}=0 ; \mathrm{i}<2 ; \mathrm{i}++$)
delete $\mathrm{p}[\mathrm{i}]$;
\}
i) What will be the output to the above program ?
ii) What will be the changed output (if any) if the destructor in class Parent is declared as virtual ?
iii) How about Child destructor only declared as virtual (and not the Parent) ?
b) What is wrong with the following code ?

Class Parent \{

Public :
Parent () $\{\ldots .$.
Parent (Parent obj) \{.....\} \};

Suggest suitable modifications to the above code to make it work correctly.
$(3+3+3)+5$

5. a) The items : A, B, C, D and E are pushed in a stack, one after the other starting from A. The stack is popped four times and each element is inserted in a queue. Then two elements are deleted from the queue and pushed back on the stack. Now one item is popped from the stack. Which item will be popped and why?
b) A list of integers is read in, one at a time, and a binary search tree is constructed. Next the tree is traversed and the integers are printed. Which traversal would result in a print out which duplicates the original order of the list of integers ? Explain with an example.
c) Write recursive routines in C to traverse a binary tree in Pre-order \& Post-order.
d) Define a Binary tree. Prove that a binary tree containing n nodes has exactly $(n+1)$ NULL links.

$$
2+(1+3)+5+(1+2)
$$

6. a) Eliminate recursion from the following code, applying standard procedures :
```
QSort (int lower, int upper) {
if (lower > upper) return;
int middle : = find Pivot (lower, upper);
QSort (lower, middle - 1);
QSort (middle + 1, upper);
}
```

b) Show with the following array that the non-recursive version indeed correctly implements the QuickSort procedure :
$\begin{array}{llllllllll}11 & 22 & 12 & 17 & 33 & 21 & 23 & 29 & 7+7\end{array}$
7. a) Define Binary Search Tree. When will a BST become an AVL tree ?
b) Draw an AVL tree for the following key elements :

A, Z, B, Y, C, X, D, W, E, V, F
c) Now delete a node from the above constructed tree which has both its children present.
d) What is the purpose of a STACK in implementing a recursive procedure ?

$$
(2+2)+6+2+2
$$

8. a) The following Hash functions are given for Double Hashing case where the hash table size is 13 :

$$
\mathrm{hl}=(\text { key } \bmod 13) \quad \mathrm{h} 2=1+(\text { key } \bmod 11)
$$

Show the configuration of the Hash Table after the following values are inserted :

$$
\begin{array}{lllll}
79 & 69 & 72 & 50 & 98
\end{array}
$$

b) Show how to implement a stack of integers in C by using an array $\mathrm{S}[\mathrm{STACKSIZE}]$, where $\mathrm{S}[0]$ is used to contain the index of the top element of the stack \& where $\mathrm{S}[1]$ thru S [STACKSIZE - 1] contain the elements of the stack.

$$
7+7
$$

