	Utech
Name:	
Roll No.:	A dear of source and confirmed
Invigilator's Signature :	

CS/M.Tech(CSE)/SEM-1/MCSE-101/2012-13 2012

ADVANCED ENGINEERING MATHEMATICS

Time Allotted: 3 Hours Full Marks: 70

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

GROUP - A

(Multiple Choice Type Questions)

- 1. Choose the correct alternatives for any *ten* of the following : $10 \times 1 = 10$
 - i) If $T:V\to W$ be a linear mapping, then for all $a,\ b,\ c\in F$ and $\alpha,\ \beta\in V$
 - a) $T(a\alpha b\beta) = aT(\alpha) + bT(\beta)$
 - b) $T(a\alpha + b\beta) = aT(\alpha) + bT(\beta)$
 - c) $T(a\alpha b\beta) = aT(\alpha) bT(\beta)$
 - d) $T(a\alpha + b\beta) = aT(\alpha) bT(\beta)$.

41191 [Turn over

CS/M.Tech(CSE)/SEM-1/MCSE-101/2012-13

- ii) The ker T of the linear mapping $T: V \rightarrow W$, is a
 - a) subspace of W
- b) subspace of $V \cap W$
- c) subspace of V
- d) none of these.
- iii) A linear mapping $T:V\to W$ is invertible if and only if T is
 - a) one-to-one and onto
 - b) one-to-one and into
 - c) one-to-many
 - d) into.
- iv) If $-\lambda^3 + b\lambda^2 9\lambda + 4$ is the characteristic polynomial of a matrix A then det (A) is
 - a) 2

b) - 9

c) 6

- d) 4.
- v) If 2, 4, 4, 4 are all the eigenvalues of a matrix, then the algebraic multiplicity of the eigenvalue 4 is
 - a) 1

b) 2

c) 0

- d) 3.
- vi) The z-transform of $\{1\}$ is
 - a) $\frac{z}{z+1}$

b) $\frac{z}{z-1}$

c) $\frac{1}{z-1}$

d) $\frac{1}{z+1}$

- vii) A random variable X has a Poisson distribution such that P(1) = P(2). Then the standard deviation of X is
 - a) 0

b) 2

c) $\sqrt{2}$

- d) 2.
- viii) f(x) is a periodic function, if for $\lambda > 0$
 - a) $f(x + \lambda) = f(x), \forall x$
 - b) $f(x-\lambda)=f(x), \forall x$
 - c) $f(x \pm \lambda) = f(x), \forall x$
 - d) none of these.
- ix) The period of the function $f(x) = \cos(2\pi x)$ is
 - a) 0

b) 1

c) 2

- d) 5.
- x) $f(x) = x^2$, $x \in [-1, 1]$. Its Fourier series contains
 - a) only sine terms
- b) only cosine terms
- c) both (a) and (b)
- d) none of these.
- xi) The period of $f(x) = \tan(x)$ is
 - a) 0

b) 1

c) π

d) $\sqrt{2}$.

- xii) If $f(x) = x \sin(x)$, $x \in [-\pi, \pi]$ is expressed as Fourier Series then
 - a) $a_0 = 2$
- b) $a_0 = 0$
- c) $a_0 = 4$
- d) $a_0 = 1$.
- xiii) The interval of f (t) defined for which Fourier transform is possible is
 - $-\infty < t < 0$ a)
- b) $0 < t < \infty$
- c) $-\infty < t < \infty$
- none of these. **d**)
- xiv) If F(s) is the Fourier transform of f(t) then Fourier transform of $f(t) \cos(t)$ is
 - a) $\frac{1}{2} F(s-a)$
 - b) $\frac{1}{2} F(s+a)$
 - c) $\frac{1}{2} [F(s+a) + F(s-a)]$
 - d) none of these.
- Fourier transform of f(t) = 1, 0 < t < 1 is
 - a) $\frac{1}{s}$

- b) $1 \cos(s)$
- c) $s\{1-\cos(s)\}$ d) $\frac{1-\cos(s)}{s}$.

xvi) The Fourier transform of f(x + a), $a \ne 0$ is

a) F(s)

- b) $e^{iax} F(s)$
- c) $e^{-iax} F(s)$
- d) e^{iax} .

xvii) The kernel function of Fourier transform is

a) e^{isx}

- b) e^{-isx}
- c) $\cos(sx)$
- d) $\sin(sx)$.

xviii) $f(x) = x^3 \cos(x), -1 \le x \le 1$ is

- a) an even function
- b) an odd function
- c) neither even nor odd d) none of these.

GROUP - B

(Short Answer Type Questions)

Answer any *three* of the following. $3 \times 5 = 15$

- 2. Find the linear mapping $T: R^3 \to R^2$ which maps the basis vectors (1, 0, 0), (0, 1, 0), (0, 0, 1) of R^3 to the vectors (1, 1), (2, 3), (-1, 2) respectively. Find T(1, 2, 0).
- 3. Find eigenvalues and eigenvectors of the matrix

$$A = \left[\begin{array}{ccc} 0 & -1 \\ & & \\ 1 & 0 \end{array} \right].$$

4. Find $Z^{-1}\left(\frac{z+2}{z^2-5z+6}\right)$

OR

Find the Fourier series of f(x) = x, $|x| \le 2$.

5. Calculate Fourier transform for the function f(x) = x, $|x| \le a$.

CS/M.Tech(CSE)/SEM-1/MCSE-101/2012-13

$$f(x) = 0, -\pi < x \le 0$$

= $\frac{\pi x}{4}, 0 < x \le \pi$.

GROUP - C (Long Answer Type Questions)

Answer any *three* of the following. $3 \times 15 = 45$

- 7. Find the linear transform $T: R^3 \to R^3$ if T(1, 0, 0) = (2, 3, 4), T(0, 1, 0) = (1, 2, 3), T(0, 1, 0) = (1, 1, 1). Find the matrix of T relative to the ordered basis $(\alpha_1, \alpha_2, \alpha_3)$ where $\alpha_1 = (1, 0, 0), \alpha_2 = (0, 1, 0), \alpha_3 = (0, 0, 1)$. Deduce that T is not invertible. 5 + 5 + 5
- 8. If $A = \begin{bmatrix} 1 & 0 & 0 \\ -1 & -2 & -1 \\ 2 & 3 & 2 \end{bmatrix}$, prove by method of induction, $A^n A^{n-2} = A^2 I, \ \forall n \ge 3. \ \text{Hence find } A^{100} \text{ and } A^{-1}.$

7 + 4 + 4

- 9. a) Using z-transform solve $y_{n+2} + 6y_{n+1} + 9y_n = 2^n$, given $y_0 = y_1 = 0$.
 - b) Two random processes X(t) and Y(t) are defined as $X(t) = A \cos(\omega_0 t) + B \sin(\omega_0 t)$ and $Y(t) = B \cos(\omega_0 t) A \sin(\omega_0 t)$. Show that X(t) and Y(t) are jointly wide sense stationary, if A and B are uncorrelated random variables with zero means and the same variance and ω_0 is a constant. 8+7

OR

Find the Fourier series of f(x), where

$$f(x) = e^{-x}, x \in [-1, 1]$$

- Check Dirichlet's condition for f(x).
- 10. Find the Fourier cosine series for f(x) = x, $0 \le x \le \pi$.
- 11. a) Find the inverse of Fourier cosine transform of

$$F(s) = \frac{1}{1+s^2}$$
.

b) Prove that

$$\Im\left\{\frac{\cos(3x)}{x^2+2}\right\} = \frac{\pi}{2\sqrt{2}}\left[e^{-\sqrt{2}|s+3|} + e^{-\sqrt{2}|s-3|}\right]$$

OR

Using Laplace transform, evaluate $\int \frac{e^{-at} \sin^2 t}{t} dt$.

7 + 8

41191