

CS/M.TECH(CSE)/SEM-1/CSEM-101/2011-12
2011
ADVANCED ENGINEERING MATHEMATICS
Time Allotted: 3 Hours
Full Marks : 70
The figures in the margin indicate full marks.
GROUP - A
(Multiple Choice Type Questions)

1. Choose the correct alternatives for the following : $10 \times 1=10$
i) What is a fundamental difference between a group and a ring ?
ii) Let G be a group and $a \in G$. If $O(a)=17$, then $O\left(a^{8}\right)$ is
a) 17
b) 16
c) 8
d) 5 .
iii) The set of all residue class Z_{6} contains
a) 6 elements
b) 5 elements
c) 7 elements
d) none of these.
iv) In the group [1, $-1, i,-i$] under multiplication, order of $-i$ is
a) 0
b) 2
c) 4
d) -4 .
v) Subgroup of a cyclic group is cyclic.
a) Yes
b) No.

vi) Which of the following is a ring ?
a) $\quad Z$ under \times and +
b) Z under + and \times
c) The set $\left\{1, w, w^{2}\right\}$ under \times and +
d) none of these.
vii) Let R_{1} and R_{2} be regular sets defined over alphabet \sum then
a) $\quad R_{1} \cap R_{2}$ is not regular b) $\quad R_{1} \cup R_{2}$ is regular
c) $\quad \sum \cap R_{2}$ is not regular d) $\quad R_{2}{ }^{*}$ is not regular.
viii) The intersection of CFL and regular language
a) is always regular
b) is always context-free
c) both (a) and (b)
d) need not be regular.
ix) A grammar that produces more than one parse tree for same sentence is called
a) ambiguous
b) unambiguous
c) regular
d) none of these.
x) The vernacular language English, if considered a formal language, is a
a) regular language
b) context-free language
c) context-sensitive language
d) none of these.

GROUP - B

(Short Answer Type Questions)

Answer any three of the following

$$
3 \times 5=15
$$

2. Show that the set $G=\{1,2,3,4,5,6\}$ forms a cyclic group under the operation modulo 7. Find all generators of this group.

3. Verify whether the set Z_{5} of all residue classes modulo 5 form a group w.r.t. multiplication of residue classes.
4. Show that intersection of subrings is a subring.
5. $M=\left(\left\{q_{1}, q_{2}, q_{3}\right\},\{0.1\}, \delta, q_{1},\left\{q_{3}\right\}\right)$ is a non-deterministic finite automata, where δ is given by

$$
\begin{array}{ll}
\delta\left(q_{1,0}\right)=\left\{q_{2}, q_{3}\right\} & \delta\left(q_{1,1}\right)=\left\{q_{1}\right\} \\
\delta\left(q_{2,0}\right)=\left\{q_{1}, q_{2}\right\} & \delta\left(q_{2,1}\right)=\{\varphi\} \\
\delta\left(q_{3,0}\right)=\left\{q_{2}\right\} & \delta\left(q_{3,1}\right)=\left\{q_{1}, q_{2}\right\}
\end{array}
$$

Convert this into its corresponding DFA.
6. Construct a finite automata accepting all strings over $\{0,1\}$ ending in 010 or 0010.

GROUP - C
(Long Answer Type Questions)
Answer any three of the following. $3 \times 15=45$
7. a) Define Boolean Function with example.
b) Construct the truth table of the Boolean function

$$
f(x, y, z)=\left(y z+x z^{\prime}\right)\left(x y^{\prime}+z\right)^{\prime}
$$

c) A light in a room is to be controlled by 3 switches, located at three entrances. Design a simple seriesparallel switching circuit such that flicking any one of the switches will change the state of the light.
8. a) Using the generating function solve the recurrence relation $a_{n}+7 a_{n-1}+10 a_{n-2}=0, \quad \forall n>1$ and $a_{0}=3$ and $a_{1}=3$.
b) Prove that every finite integral domain is fixed.
9. a) Prove that in a field F, the equations $a \cdot x=b$ and $y . a=b$ have unique solutions where $a, b \in F$ and $a \neq 0$.
b) Prove that the set P_{n} of all permutations of degree n on n symbols forms a group w.r.t. permutation multiplication.
10. a) What is distinguishable and indistinguishablestates in finite automata?
ancon
b) Use Myhill-Nerode theorem to minimize the following finite automata :

11. a) Using pumping lemma show that the set $L=\left\{a^{i \wedge 2}\right\}$ is not regular.
b) Design a CFG for the language $L=\left\{a^{n} b^{m} \mid n \neq m\right\}$.

