Name :	
Roll No. :	An Annual Without State State
Invigilator's Signature :	

CS/M.TECH(CSE)/SEM-1/CSEM-101/2011-12

2011

ADVANCED ENGINEERING MATHEMATICS

Time Allotted : 3 Hours

Full Marks: 70

The figures in the margin indicate full marks.

GROUP – A

(Multiple Choice Type Questions)

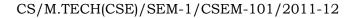
- 1. Choose the correct alternatives for the following : $10 \times 1 = 10$
 - i) What is a fundamental difference between a group and a ring ?
 - ii) Let G be a group and $a \in G$. If O (a) = 17, then $O(a^8)$ is
 - a) 17 b) 16
 - c) 8 d) 5.

iii) The set of all residue class Z_6 contains

- a) 6 elements b) 5 elements
- c) 7 elements d) none of these.
- iv) In the group [1, -1, i, -i] under multiplication, order of -i is
 - a) 0 b) 2
 - c) 4 d) -4.

40478

[Turn over



- v) Subgroup of a cyclic group is cyclic.a) Yesb) No.
- vi) Which of the following is a ring?
 - a) Z under \times and +
 - b) Z under + and ×
 - c) The set { 1, w, w^2 } under × and +
 - d) none of these.

c)

- vii) Let R_1 and R_2 be regular sets defined over alphabet Σ then
 - a) $R_1 \cap R_2$ is not regular b) $R_1 \cup R_2$ is regular
 - c) $\sum \cap R_2$ is not regular d) R_2^* is not regular.
- viii) The intersection of CFL and regular language
 - a) is always regular b)
 - ular b) is always context-free
 - both (a) and (b) d) need not be regular.
- ix) A grammar that produces more than one parse tree for same sentence is called
 - a) ambiguous b) unambiguous
 - c) regular d) none of these.
- x) The vernacular language English, if considered a formal language, is a
 - a) regular language
 - b) context-free language
 - c) context-sensitive language
 - d) none of these.

GROUP – B

(Short Answer Type Questions)

Answer any *three* of the following $3 \times 5 = 15$

2. Show that the set $G = \{1, 2, 3, 4, 5, 6\}$ forms a cyclic group under the operation modulo 7. Find all generators of this group.

2

- 3. Verify whether the set Z_5 of all residue classes modulo 5 form a group w.r.t. multiplication of residue classes.
- 4. Show that intersection of subrings is a subring.
- 5. $M = (\{q_1, q_2, q_3\}, \{0, 1\}, \delta, q_1, \{q_3\})$ is a non-deterministic finite automata, where δ is given by

$$\begin{split} \delta(q_{1,0}) &= \{ q_2, q_3 \} & \delta(q_{1,1}) &= \{ q_1 \} \\ \delta(q_{2,0}) &= \{ q_1, q_2 \} & \delta(q_{2,1}) &= \{ \varphi \} \\ \delta(q_{3,0}) &= \{ q_2 \} & \delta(q_{3,1}) &= \{ q_1, q_2 \} \end{split}$$

Convert this into its corresponding DFA.

6. Construct a finite automata accepting all strings over $\{0, 1\}$ ending in 010 or 0010.

GROUP – C (Long Answer Type Questions)

Answer any *three* of the following. $3 \times 15 = 45$

- 7. a) Define Boolean Function with example.
 - b) Construct the truth table of the Boolean function

f(x, y, z) = (yz + xz')(xy' + z)'

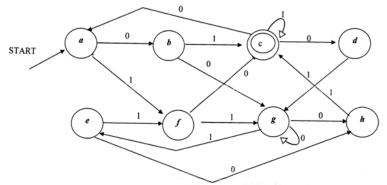
- c) A light in a room is to be controlled by 3 switches, located at three entrances. Design a simple seriesparallel switching circuit such that flicking any one of the switches will change the state of the light.
- 8. a) Using the generating function solve the recurrence relation $a_n + 7a_{n-1} + 10a_{n-2} = 0$, $\forall n > 1$ and $a_0 = 3$ and $a_1 = 3$.
 - b) Prove that every finite integral domain is fixed.
- 9. a) Prove that in a field *F*, the equations a.x = b and y.a = b have unique solutions where $a, b \in F$ and $a \neq 0$.
 - b) Prove that the set P_n of all permutations of degree n on n symbols forms a group w.r.t. permutation multiplication.

40478

[Turn over

CS/M.TECH(CSE)/SEM-1/CSEM-101/2011-12

- 10. a) What is distinguishable and indistinguishable states in finite automata ?
 - b) Use Myhill-Nerode theorem to minimize the following finite automata :



- 11. a) Using pumping lemma show that the set $L = \{a^{i \wedge 2}\}$ is not regular.
 - b) Design a CFG for the language $L = \{a^n b^m \mid n \neq m\}$.