	Utech
Name:	
Roll No.:	To Opening (by Exemples 2 and Exemples)
Invigilator's Signature :	

CS/M.TECH (CSE)/SEM-1/CST-612/2012-13 2012

ADVANCED ALGORITHM & DBMS

Time Allotted: 3 Hours Full Marks: 70

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

GROUP - A

Question No. 1 is compulsory and answer any two of the rest.

1. Is
$$2^{n+1} = O(2^n)$$
? Is $2^{2n} = O(2^n)$.

 a) Solve the following Recurrence relation using Master's Theorem.

i)
$$T(n) = 2T(n/2) + n$$

ii)
$$T(n) = 7T(n/3) + n^3$$

iii)
$$T(n) = 4T(n/2) + n$$
.

 Using the algorithm and mathematical example, prove that Fractional Knapsack problem has the Greedy choice property.

40077 Turn over

- 3. a) Prove that the total running time of BFS is O(V + E), satisfy your answer with example.
 - b) Suppose that the Graph G = (V, E) is represented as an adjacency matrix. Give a simple implementation of Prim's algorithm for this case that runs in $O(V^2)$ time.

9

- 4. a) In place of while ($Q! = \emptyset$) if we write while (|Q| > 1) in Dijkstra's algorithm. This change causes to execute |V| 1 times instead |V| times. Is this proposed algorithm correct, explain.
 - b) Using a suitable example prove that Bellman-Ford algorithm runs in time O(VE).
- 5. a) Explain Travelling salesman problem with example. 6
 - b) Compare Greedy and Dynamic programming approach with example.

GROUP - B

Question No. **6** is compulsory and answer any *two* of the rest.

- 6. Prove that any relation schema with two attribute is in BCNF. 5
- 7. a) Consider the following proposed rule for functional dependencies :

If $\alpha \to \beta$ and $\gamma \to \beta$, then $\alpha \to \gamma$.

Prove that this rule is not sound by showing a relation r that satisfies $\alpha \to \beta$ and $\gamma \to \beta$, but does not satisfy $\alpha \to \gamma$.

b) Explain why 4 NF is a normal form more desirable than BCNF. 5

2

40077

- c) Consider the E-R diagram in which same entity set appears several times. Why is allowing this redundancy a bad practice that one should avoid whenever possible.
- 8. a) Draw the precedence graph for the following Schedule.

 Test the Schedule whether it is conflict or serial schedule. If conflict then wire down the equivalent serial schedule.

T1	Т2	Т3
_	_	Read(y)
_	_	Read(z)
Read(x)	_	_
_	_	Write(y)
Write(x)	_	Write(y)
_	Read(z)	_
Read(y)	_	_
_	Read(y)	_
Write(y)	Write(y)	_
_	Read(x)	_
_	Write(x)	_

- b) Why is a serializable schedule considered correct? 5
- Most implementations of database system use strict two phase locking. Suggest three reasons for the popularity of this protocol.
- 9. a) Discuss the relative advantages of centralized and distributed databases.
 - b) When is it useful to have replication or fragmentation of data? Explain your answer?
 - c) Can we call procedure inside a function in PL/SQL ? $\,4$

- 10. a) Explain "Every conflict serializable schedule is view serializable schedule" with an example, 5
 - b) Prove that the following schedule consisting two transactions with deadlock:

Consider the following two transactions:

 T_1 : write(X)

 T_2 : write(Y)

write(Y)

write(X)

T1	T2
Lock-x (X)	_
Write(X)	_
_	Lock-x (Y)
_	Write(X)
_	Lock-x (X)
Lock-x (Y)	_

c) Explain the Thomas's Write Rule.

6

- 11. a) Why are entity integrity and referential integrity important in a database?
 - b) Finding the names of everybody who works in the same department as a person called Jones. Use Oracle default table EMP.
 - c) What is the difference between conflict equivalence and view equivalence?