

CS/M.Tech (CHE)/SEM-2/CH-8/2010 2010
 ADVANCED REACTOR ANALYSIS

Time Allotted : 3 Hours
Full Marks : 70

The figures in the margin indicate full marks.
Candidates are required to give their answers in their own words as far as practicable.

Answer any five of the following. $5 \times 14=70$

1. A liquid phase reaction $\mathrm{A}+\mathrm{B} \rightarrow \mathrm{C}$ is carried out in a CSTR to produce $1,00,000 \mathrm{~kg}$ / day of the product C (Mol. wt. 60). The aqueous solution of A (Mol. wt. 60) is continuously fed to the reactor containing $2 \mathrm{kmol} / \mathrm{m}^{3}$ of A along with an aqueous solution of B of same concentration and at same volumetric flow rate. Calculate the volume of reactor needed for achieving 90% conversion of A. The second order rate constant is given as $0.08 \mathrm{~m}^{3} /(\mathrm{kmol})$. (sec) at the temperature of the reaction.
2. A tracer is introduced in a reactor and its concentration is measured at the outlet as follows :

Time (min)	1.0	2.0	3.0	4.0	5.0	10.0	20.0	30.0
Tracer								
Conc. (gm/min)	1.8	1.6	1.38	1.2	1.08	0.6	0.15	0.05

The fluid volume in the reactor is $1.5 \mathrm{~m}^{3}$ and the volumetric flow rate is $0 \cdot 1 \mathrm{~m}^{3} / \mathrm{min}$. Calculate mean residence time in the reactor and compare it against hydraulic residence time.
3. a) Develop an expression for optimum conversion for maximum profit for a 2 nd order reaction $2 \mathrm{~A} \rightarrow \mathrm{~B}$ carfied out in a batch reactor.
b) For the following reaction sequence mention the optimum temperature trajectory for the following cases :

Case I	$E_{1}>E_{2}$,	$E_{3}>E_{4}$
Case II	$E_{1}<E_{2}$,	$E_{3}<E_{4}$
Case III	$E_{1}<E_{2}$,	$E_{3}>E_{4}$
Case IV	$E_{1}>E_{2}$,	$E_{3}<E_{4}$

4. Write short notes on the following :
a) Autothermic Operation. 6
b) Catalyst Effectiveness Factor. 4
c) Ills of nonoideal reactors.
5. Prove that for simultaneous reactions of identical orders, yield of selectivity is the same in a CSTR \& PFR.
6. Describe with the help of mathematical expression 'steady state multiplicity' for a CSTR for liquid phase reactions. Discuss stability of a CSTR.14
7. For longitudinal dispersion model with a 1st order chemrical reaction the following relation of concentration against dispersion number has been obtained. Derive an expression for L_{D} / L_{P} against dispersion number for all other conditions remaining same.
$\frac{C_{A}}{C_{A_{0}}}=\frac{4 \beta e^{u_{x} L / 2 D}}{(1+\beta)^{2} e^{\beta^{u} \times L / 2 D}-(1-\beta)^{2} e^{-\beta u_{x} L / 2 D}}$
where $\beta=\left[1+4 \mathfrak{R}\left(\frac{D}{u_{x} L}\right) \frac{L}{u_{x}}\right]^{\frac{1}{2}}$
Solve the above problem for small dispersion number $\frac{D}{v_{x} L}$
$\mathrm{L}_{\mathrm{D}}=$ length of dispersed flow reactor
$L_{P}=$ length of plug flow reactor.
