Name:	Utech
Roll No.:	
Invigilator's Signature :	

CS/M.Tech (CHE)/SEM-2/CH-8/2010 2010 ADVANCED REACTOR ANALYSIS

Time Allotted: 3 Hours Full Marks: 70

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

Answer any *five* of the following. $5 \times 14 = 70$

- 1. A liquid phase reaction $A + B \rightarrow C$ is carried out in a CSTR to produce 1,00,000 kg/day of the product C (Mol. wt. 60). The aqueous solution of A (Mol. wt. 60) is continuously fed to the reactor containing 2 kmol/m³ of A along with an aqueous solution of B of same concentration and at same volumetric flow rate. Calculate the volume of reactor needed for achieving 90% conversion of A. The second order rate constant is given as $0.08 \, \text{m}^3/(\text{kmol})$. (sec) at the temperature of the reaction.
- 2. A tracer is introduced in a reactor and its concentration is measured at the outlet as follows:

Time (min) $1.0 \quad 2.0 \quad 3.0 \quad 4.0 \quad 5.0 \quad 10.0 \quad 20.0 \quad 30.0$ Tracer

Conc. (gm/min) 1.8 1.6 1.38 1.2 1.08 0.6 0.15 0.05

The fluid volume in the reactor is 1.5 m^3 and the volumetric flow rate is $0.1 \text{ m}^3/\text{min}$. Calculate mean residence time in the reactor and compare it against hydraulic residence time.

14

30097 (M.TECH)

[Turn over

- a) Develop an expression for optimum conversion for maximum profit for a 2nd order reaction 2A → B carried out in a batch reactor.
 - b) For the following reaction sequence mention the optimum temperature trajectory for the following cases :

Case I
$$E_1 > E_2$$
, $E_3 > E_4$

Case II
$$E_1 < E_2$$
, $E_3 < E_4$

Case III
$$E_1 < E_2$$
, $E_3 > E_4$

Case IV
$$E_1 > E_2$$
, $E_3 < E_4$ 8

- 4. Write short notes on the following:
 - a) Autothermic Operation.

6

b) Catalyst Effectiveness Factor.

4

c) Ills of nonoideal reactors.

4

- 5. Prove that for simultaneous reactions of identical orders,yield of selectivity is the same in a CSTR & PFR.
- 6. Describe with the help of mathematical expression 'steady state multiplicity' for a CSTR for liquid phase reactions.

 Discuss stability of a CSTR.

30097 (M.TECH)

7. For longitudinal dispersion model with a 1st order chemical reaction the following relation of concentration against dispersion number has been obtained. Derive an expression for $L_{\rm D}/L_{\rm P}$ against dispersion number for all other conditions remaining same.

$$\frac{C_{A}}{C_{A_{0}}} = \frac{4\beta e^{u_{x}L/2D}}{(1+\beta)^{2} e^{\beta^{u_{x}L/2D}} - (1-\beta)^{2} e^{-\beta u v_{x}L/2D}}$$

where
$$\beta = \left[1 + 4\Re\left(\frac{D}{u_x L}\right) \frac{L}{u_x}\right]^{\frac{1}{2}}$$

Solve the above problem for small dispersion number $\frac{D}{v_x L}$

 L_D = length of dispersed flow reactor

 L_P = length of plug flow reactor.