

CS / M.TECH(CHE-OLD) /SEM-2 / CH-07 / 2012 2012

ADV. MASS TRANSFER

Time Allotted : 3 Hours
Full Marks : 70

The figures in the margin indicate full marks.
Candidates are required to give their answers in their own words as far as practicable.

Answer Q. No. 1 and any four from the rest.

1. An adiabatic tray absorber absorbs an entering gas mixture at $25^{\circ} \mathrm{C}$ containing 72 mole $\% \mathrm{CH}_{4}, 13 \% \mathrm{C}_{2} \mathrm{H}_{6}$, $10 \% n-\mathrm{C}_{3} \mathrm{H}_{8}$ and $5 \% n-\mathrm{C}_{4} \mathrm{H}_{10}$ using an entering liquid containing 1.0 mole $\% n-\mathrm{C}_{4} \mathrm{H}_{10} \quad, 99 \%$ non-volatile hydrocarbon oil at $25^{\circ} \mathrm{C}$. The entering liquid to gas ratio is 3.5 mole liquid / mole entering gas. The pressure is 2 std. atmospheres. At least 70% of the propane and $29 \cdot 4 \%$ of ethane of the entering gas are to be absorbed. The solubility of methane in liquid is negligible.
a) Estimate the number of ideal trays required and the compositions of the effluent gas streams. The total absorption of gas is 0.15 kmol based on 1.0 kmol of feed gas.
b) Compute the bottom tray temperature, given the top tray temperature $26^{\circ} \mathrm{C}$. The following data are available :

Component	Sp. Heat kJ/kmol. K		Latent heat of vaporization $\mathrm{kJ} / \mathrm{kmol}$.	Equilibrium Constant $\mathrm{M}=y^{*} / x$
	Gas	Liquid	-	-
CH_{4}	$35 \cdot 59$	insoluble	-	-
$\mathrm{C}_{2} \mathrm{H}_{6}$	53.22	105	10032	$13 \cdot 25$
$n-\mathrm{C}_{3} \mathrm{H}_{8}$	76.04	116	16580	$4 \cdot 1$
$n-\mathrm{C}_{4} \mathrm{H}_{10}$	$102 \cdot 4$	$138 \cdot 6$	22530	$1 \cdot 19$
oil	-	377	-	

Use Edmister equation as given below
$\frac{Y^{\prime}{ }_{N_{p}+1}-Y^{\prime}{ }_{1}}{Y^{\prime}{ }_{N_{p}+1}}=\left(1-\frac{L_{0} X_{0}}{A G_{N_{p}+1} Y^{\prime}{ }^{\prime} N_{p}+1}\right) \frac{A^{N_{p}+1}-A}{A^{N_{p}+1}-1}$
The symbols have their usual meanings.
2. A mixture of benzene, toluene and o-xyfene is to be separated in a distillation column equipped with a total condenser and a partial reboiler. The feed is a saturated liquid containing 30% benzene, 45% toluene and 25% o-xylene. The bottoms are to contain 95% of the o-xylene charged with a concentration of 0.99 mole fraction o-xylene. Determine the plate liquid composition for the first three plates from the top at a reflux ratio of 3.0 and a pressure of 1 atm . Assume top three plate temperatures are $103^{\circ} \mathrm{C}$, $108^{\circ} \mathrm{C}$ and $113^{\circ} \mathrm{C}$ respectively.

Constants of the Antoine equations $P_{0}=e^{(A-B / T)}$ are given below :

Name	A	B
Benzene	17.397	$3802 \cdot 1$
Toluene	17.599	$4208 \cdot 8$
o-xylene	17.962	$4728 \cdot 6$

Where $P_{0}=$ Vapour pressure mm Hg , and $T=$ Temp. in K .
3. a) Carbon dioxide is absorbed in NaOH solution in a counter-current packed absorption tower. The reaction between dissolved carbon dioxide and NaOH is second order and irreversible for short contact time. Under steady state condition, the flow is assumed to be onedimensional in Z direction. The effect of dispersion is negligible. Use the equation of continuity for mass transfer to calculate the final concentration of carbon dioxide in the exit liquid stream. The overall resistance is due to physical mass transfer as well as chemical reaction resistances.

The equation of continuity for mass transfer with chemical reaction is given below.

$$
\begin{aligned}
\frac{\partial C_{A}}{\partial t}+\left(V_{x} \frac{\partial C_{A}}{\partial x}+\right. & \left.V_{y} \frac{\partial C_{A}}{\partial y}+V_{z} \frac{\partial C_{A}}{\partial z}\right)= \\
& D_{A B}\left(\frac{\partial^{2} C_{A}}{\partial x^{2}}+\frac{\partial^{2} C_{A}}{\partial y^{2}}+\frac{\partial^{2} C_{A}}{\partial z^{2}}\right)+R_{A}
\end{aligned}
$$

b) Ethyl acetate drops (pressurized with water) are dispersed in an aqueous solution of NaOH in a liquidliquid extraction spray tower. The flow is countercurrent. The reaction is given by

$$
\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{C}_{2} \mathrm{H}_{5}+\mathrm{NaOH}=\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{Na}+\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}
$$

The reaction is irreversible. The following conditions are maintained :
i) Steady state one dimensional flow in z-direction
ii) Effect of velocity is negligible.
iii) The change in the concentration of NaOH is negligible. The reaction is pseudo first order with respect to acetate concentration in aqueous film.
iv) The resistance is due to chemical reaction only.

Use equation of continuity for mass transfer to obtain the governing differential equation and solve this equation using the boundary conditions :
$Z=0, C_{A}=C_{A i}, Z=Z_{L}, C_{A}=C_{A L}$, where $Z_{L}=$ thickness of aqueous film, $C_{A i}=$ Conc. of acetate in the aqueous phase at interface.
c) Explain surface renewal theory by Danckwerts.
4. Estimate the vapour composition at 1 atm that is in equilibrium with a liquid mixture that contains 2.5 mole $\%$ ethanol, $39 \cdot 5$ mole $\% n$-propanol and 58 mole $\% n$-butanol. Also calculate the Bubble Point.

Constants of the Antoine equation $\ln P_{0}=A-B /(C+T)$ are given below :

Name	A	B	C
ethanol	18.9119	3803.98	-41.68
n-propanol	17.544	3166.38	-80.15
n-butanol	17.216	3137.02	-94.43

Where $P_{0}=$ Vapour pressure mm Hg , and $T=$ Temp in K.
5. The following feed at $82^{\circ} \mathrm{C} 1635 \mathrm{kN} / \mathrm{m}^{2}$ is to be fractionated at that pressure so that the vapour distillate contains 98% of the $\mathrm{C}_{3} \mathrm{H}_{8}$ but only 1% of $\mathrm{C}_{5} \mathrm{H}_{12}$.

Component	CH_{4}	$\mathrm{C}_{2} \mathrm{H}_{6}$	$n-\mathrm{C}_{3} \mathrm{H}_{8}$	$n-\mathrm{C}_{4} \mathrm{H}_{10}$	$n-\mathrm{C}_{5} \mathrm{H}_{12}$	$n-\mathrm{C}_{6} \mathrm{H}_{14}$
Mole fraction In feed	0.03	0.07	0.15	0.33	0.3	0.12

Estimate the minimum reflux ratio and the corresponding product. Values of m for each component at different temperatures are given below :

Component	$30^{\circ} \mathrm{C}$	$60^{\circ} \mathrm{C}$	$90^{\circ} \mathrm{C}$	$120^{\circ} \mathrm{C}$
CH_{4}	$16 \cdot 1$	$19 \cdot 3$	$21 \cdot 8$	24
$\mathrm{C}_{2} \mathrm{H}_{6}$	3.45	$4 \cdot 9$	$6 \cdot 25$	$8 \cdot 15$
$n-\mathrm{C}_{3} \mathrm{H}_{8}$	$1 \cdot 1$	2	$2 \cdot 9$	4
$n-\mathrm{C}_{4} \mathrm{H}_{10}$	0.35	0.7	$1 \cdot 16$	1.78
$n-\mathrm{C}_{5} \mathrm{H}_{12}$	0.085	0.26	0.5	0.84
$n-\mathrm{C}_{6} \mathrm{H}_{14}$	0.03	$0 \cdot 13$	0.239	0.448

6. a) Derive an equation to calculate the number of theoretical plates for multicomponent distillation. 8
b) Differentiate beween multicomponent Azeotropic and Extractive distillation with a suitable example.
7. a) Write short notes on any one :
i) Pervaporation
ii) Nanofiltration.
b) Derive a model equation showing CP modulus of a ultrafiltration module the depends on the fractional rejection of the solute.
