N.	Utech
Name:	
Roll No.:	
Invigilator's Signature :	

CS/M.Tech (BT)/SEM-3/MBT-303A/2010-11 2010-11 NANOTECHNOLOGY

Time Allotted: 3 Hours Full Marks: 70

The figures in the margin indicate full marks.

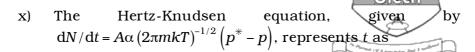
Candidates are required to give their answers in their own words as far as practicable.

GROUP - A

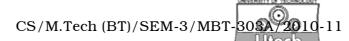
(Multiple Choice Type Questions)

- 1. Choose the correct alternatives for any ten of the following: $10 \times 1 = 10$
 - i) How can nanoparticles be used to treat cancer?
 - a) Nanotubes can create pores in the cancer cells, thus leaking out the cellular components and killing the cell.
 - b) Some nanoparticles can bind to specific enzymes in cancer cell metabolism to block reactions.
 - c) Nanoparticles can recruit immune system components directly to the cancer cells.
 - d) Nanoparticles can be designed to absorb radiant energy in the IR spectrum, which produces heat that destroys only the cancer cells because living tissue does not absorb IR energy.

40530 [Turn over


- ii) Which cellular component is considered to be a nano-(assembler)?
 - a) Chromatin
- b) Ribosomes

c) DNA


- d) mRNA.
- iii) What is a potential use of nanoparticles in the field of biotechnology?
 - a) Delivery of pharmaceuticals or genetic material
 - b) Tumour destruction
 - c) Fluorescent labelling
 - d) All of these.
- iv) What is nanotechnology?
 - a) The individual manipulation of molecules and atoms to create materials with novel or improve properties
 - b) The creation of new terms to describe very small, almost unimaginable, particles in physics
 - c) The term is used to describe the size of cellular components
 - d) The transition of molecular biology into the physical sciences.
- v) Which of the following is structure that can be created by nanoengineering of DNA?
 - a) Cubical structure
 - b) Nanoscale scaffolds and nanowires
 - c) Frameworks for mechanical device
 - d) All of these.

- vi) What purpose could nanotubes serve in biotechnology?
 - a) As a metallic conductor or semiconductor
 - b) For the creation of components of electronic equipment
 - c) For attachment of biomolecules, including enzymes, hormone receptors and antibodies
 - d) For the detection of a specific molecules in a sample, such as blood.
- vii) Unique properties of nanoparticles develop due to
 - a) increase of surface exposed atom/molecule
 - b) increase of particle mobility
 - c) changes of interacting force
 - d) all of these.
- viii) The strength of a nanomaterial develops due to
 - a) uniform packing of the particles
 - b) inherent strength of the nanoparticles
 - c) tight binding between the particles
 - d) all of these.
- ix) Comparison of the size of a bacterial cell with reference to a nanoparticle of maximal size yields a ratio of
 - a) 10:15

- b) 1:5
- c) 100:200
- d) 300:400.

- a) the rate of evaporation of a liquid
- b) an isobaric expression
- c) a temperature jump expression
- d) a volume change expression.
- xi) A zigzag CNT is formed for
 - a) $\theta = 0$ and chirality (a, 0)
 - b) $\theta = \pi/6$ and chirality (a, a)
 - c) $0 < \theta < \pi/6$ nd chirality (a, b)
 - d) $0 < \theta < \pi/2$ and chirality (a, a).
- xii) Which of the following measurement techniques has led to maximal development of molecular electronics?
 - a) Fluorescence microscopy
 - b) Near-IR spectroscopy
 - c) Scanning tunneling microscopy
 - d) UV-spectrophotometry.
- xiii) Quantum dots are nanoparticles with
 - a) luminescent tags
 - b) chromophore attachments
 - c) conducting properties
 - d) all of these.

- xiv) Soft molecule electronics uses as components
 - a) logic gates and switches of microelectronics
 - b) organic and organometallic molecules
 - c) single crystals
 - d) field effect transistors.
- xv) Electrical conductivity in nanoparticles is measured by
 - a) $\sigma = Ne^2 \tau / m$
- b) $\sigma = Ne^2 \tau^2 / m$
- c) $\sigma = Ne \tau^3 / m$
- d) $\sigma = Ne^2 \tau^3 / m$.

GROUP - B

(Short Answer Type Questions)

Answer any *three* of the following.

- $3 \times 5 = 15$
- 2. Describe antibacterial nanocarpets with a diagram.
- 3. a) Write the names of different branches of science which helped to develop nanotechnology.
 - b) Describe size dependent properties of nanomaterials.

$$2\frac{1}{2} + 2\frac{1}{2}$$

- 4. a) First who coined the term 'Nanotechnology'?
 - b) Describe the different applications of Nanotechnology.
 - c) Describe the difference between nanotechnology and Nanoscience. 1+2+2

- 5. a) Explain briefly how cell signalling can occur by the use of nanotubes.
 - b) How are gap junction proteins involved in the nanotube mediated process?
 - c) How are tunneling nanotubes implicated in HIV-I transmission? 1+2+2
- 6. Define SWCNT and MWCNT in terms of geometrical considerations. How can you convert SWCNTs to MWCNTs?
- 7. How can a dry powder nanoparticle's (e.g. TiO $_2$) size be determined by XRD ? What is the operative equation ? Define the terms in it.
- 8. How have nanoparticles (at least two types) been used for experimental delivery of vaccines?

GROUP - C

(Long Answer Type Questions)

Answer any *three* of the following. $3 \times 15 = 45$

- 9. a) What is a nanorobot?
 - b) What are its basic features and how do they work?
 - c) How are nanorobots utilized in medicine?
 - d) Describe the different diagnostic and therapeutic applications of nanotechnology in medicine.

6

1 + 4 + 2 + 8

40530

- 10. a) What is a sensor? Explain briefly its working principle.
 - b) Why do we need nanosensors?
 - c) Describe the recognition process and applications of a nanosensor using a diagram only.
 - d) Describe the operational mechanism of the following with a diagram :
 - i) H_2S nanosensor
 - ii) SiNW based pH nanosensor
 - iii) SiNW based nanosensor in detection of protein and DNA. 2+2+3+8
- Discuss the use of protein nanoparticles in biotechnology.Briefly describe the use of different proteins for this purpose.What are the different methods available for the synthesis of protein nanoparticles.
- 12. a) Draw the diagram of a electron beam lithography setup.
 - b) Of what material is a soft lithographic mold made of?
 - c) Name 5 different ways of replicating patterns in soft lithography. Highlight the two methods of soft lithography that have the most biological/biomedical significance. Use diagrams as appropriate to highlight your answer. 4+3+8

40530 7 [Turn over

- 13. a) What are two ideal therapeutic drug molecule characteristics that have been altered by development of nanotube based drug delivery schemes?
 - b) What are the common methods of functionalization of pristine carbon nanotubes? Why is it necessary to functionalize carbon nanotubes prior to use in drug delivery applications? 4+2
 - c) Detail two methods of synthesizing MWCNTs. Based on available reliable information in the literature, what are two most appropriate techniques to characterize CNTs?
- 14. What are the three technical reasons why regulatory approval of nanomedicines have been delayed? What are the structurally and size-wize differences between a medicinal liposome and a nanoparticle used for site of action drug delivery? How has cellular uptake of peptides been mediated by nanoparticles? 4+6+5
- 15. a) Define and illustrate Moore's law. How has development of a 13.5 nm EUV light source helped in ensuring that Moore's law is not violated? In what areas of medical technology has this been of primary utility? 4+3+2
 - b) How have nanotechnology principles been utilized to improve ideal drug characteristics of
 - i) suicide inhibitors
 - ii) Triggered response drugs.

6