	Utech
Name :	
Roll No.:	
Invigilator's Signature :	

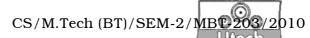
CS/M.Tech (BT)/SEM-2/MBT-203/2010 2010 BIOINFORMATICS & DRUG DESIGN

Time Allotted: 3 Hours Full Marks: 70

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

GROUP – A (Multiple Choice Type Questions)


- any ten of the 1. Choose the correct alternatives for following: $10 \times 1 = 10$ A $\mathbf{3}_{10}$ helix has atoms separating the i) amino hydrogen and carboxyl oxygen atoms that are hydrogen bonded together to form one complete turn of the helix. 10 12 a) b) c) 5 d) 6.
 - ii) An example of a functional macromolecular fold is
 - a) TIM barrel
- b) Rossmann fold
- c) Flavodoxin-like
- d) all of these.

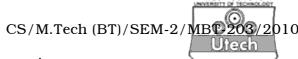
30269 (M.Tech)

[Turn over

CS/M.Tech (BT)/SEM-2/MBT-203/2010

- iii) LINUS is an algorithm that is used to predict protein fold. The algorithm is based on
 - a) dot-plot comparison
 - b) hidden neural network
 - c) hierarchic condensation
 - d) optimal local alignment.
- iv) A single ligand-multiple protein docking calculation provides which of the following specific pieces of information?
 - a) Binding energy estimation
 - b) Mode of binding
 - c) Specificity prediction
 - d) Ranking of affinities of ligand.
- v) The geometrical interpretation of a neuron that accepts two inputs x and y and fires if and only if $x + 2y \ge 2$ is that it selects
 - a) points below and to the left to the line x + 2y = 2
 - b) points above and to the right of the line x + 2y = 2
 - c) points to the right of the line x + 2y = 2
 - d) points to the left of the line x + 2y = 2

- vi) A biologically significant 'hit' returned by a database search is easiest for which of the following?
 - a) Protein local alignment
 - b) Protein global alignment
 - c) DNA matches from a coding region
 - d) DNA matches from a non-coding region.
- vii) An example of a lead compound developed from the side effect of an existing drug is
 - a) Penicillin
- b) Interleukin-2
- c) Minoxidil
- d) all of these.
- viii) A good cross validation in QSAR is indicated by
 - a) $r^2 < 0$


- b) $r^2 < 0.5$
- c) $r^2 = 0.5$
- d) $r^2 > 0.5$.
- ix) The partition coefficient P between 1-octanol and water is given by
 - a) $P = [compound]_{oct}/[compound]_{aq}(1-\alpha)$
 - b) $P = [compound]_{oct}/[compound]_{aq}$
 - c) $P = [compound]_{aq}/[compound]_{oct}(1-\alpha)$
 - d) $P = [compound]_{oct} \times [compound]_{aq}$.
- x) Given two character strings, a measure of the distance between them is given by
 - a) Interpolation length
- b) Forster distance
- c) Hamming distance
- d) Leventhal's distance.

CS/M.Tech (BT)/SEM-2/MBT-203/2010

- xi) In a dynamic programming algorithm the matrix D(i,j) represents the minimum distance between strings. In which of the following ways does the algorithm compute D(i,j)?
 - a) By a recursive operation
 - b) By an iterative one
 - c) By an exponential decay
 - d) By a parabolic dependence.
- xii) Structure prediction of α -helical transmembrane segment includes use of
 - a) hydrophobicity
 - b) neural networks
 - c) evolutionary information
 - d) all of these.
- xiii) The key property(ies) of biological systems/modules is/are
 - a) irreducibility
- b) emergence
- c) complexity
- d) all of these.
- xiv) In beginning software platform/OS development which one of the following corporate entities was not involved?
 - a) Intel

- b) Oracle
- c) Sun Microsystems
- d) Microsoft.

30269 (M.Tech)

xv) Monophyletic group is

- a) a group of taxa descended from a single common ancestor
- b) a pair of taxa descended from a single common ancestor
- c) five taxa descended from a single common ancestor
- d) a group of species descended from a single common ancestor.

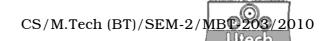
xvi) PSSM stands for

- a) Position Specific Scoring Models
- b) Positional Specific Scoring Models
- c) Position Specific Scoring Matrix
- d) Position Specific Scoring Match.

xvii) Histamine is

- a) a bronchodilator
- b) a small compound that becomes immunogenic under specific conditions
- c) a vasoactive organic compound released from granules within vast cells
- d) an enzyme that unwinds the DNA double helix.

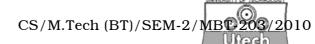
GROUP - B


(Short Answer Type Questions)

Answer any three of the following.

- 2. a) Briefly describe the two cladistic methods that deal with patterns of ancestry.
 - b) Why are cladistic methods more accurate than simple clustering methods? 2+3
- 3. What two sub-disciplines form the basis of systems biology?

 How does systems biology lead to a better understanding of genotype-phenotype relationships? 2+3
- 4. Many proteins from pathogens have human homologous. Suppose you had devised a method for comparing the factors that determine specificty in the binding sites of two homologous proteins. How could you use this method to select specific targets for drug design?
- 5. a) Define different types of gap penalties in sequence alignment programmes, with suitable examples.
 - b) Mention the difference between global and local alignments. 3+2


- 6. Why is loop modelling a relatively difficult problem in homology modelling? Pointwise describe the database method for modelling loops. Name two public domain web servers that model loops. 2 + 2 + 1
- 7. What is the main objective of molecular phylogenetics? Use a simple diagram to represent why finding a correct tree topology is computationally difficult. Write out the mathematical formula for the number of trees (N_R) for n taxa. Explain the formula. 2+1+2
- 8. Many empirical methods have been developed/being developed for accurate correlation of physico-chemical parameters with biological activity. Describe the Free and Wilson equation to address this issue and the modifications to this. Validate this approach with one hypothetical example of a lead compound.
- 9. a) The overall base composition of the *E.coli* genome is A = T = 49.2%; G = C = 50.8%. In a random sequence of 4 639 221 nucleotides with these proportions, what is the expected number of occurrences of the sequence *CTAG*?
 - b) Depict the construction of a PSSM from a multiple alignment of nucleotides. $2\frac{1}{2} + 2\frac{1}{2}$

GROUP - C

(Long Answer Type Questions)

Answer any *three* of the following. $3 \times 15 = 45$

- 10. a) Briefly describe how the UPGMA method of tree building works. Why was the UPGMA method modified to the Neighbour joining method?
 - b) Consider 4 species characterized by homologous sequences ATCC, ATGC, TTCG and TCGG. Taking the number of differences as the measure of dissimilarity between each pair of species, use a simple clustering procedure to derive a phylogenetic tree. (Hint: You will be using the UPGMA method here).
 - c) From the final tree graph obtained in (b) above how was the branch length of the nodes joining the clusters (ATCC, ATGC) and (TTCG, TCGG) arrive at?
- 11. a) What are the major biochemical classes of drug targets? Use a histogram to illustrate the approximate percentage of these.
 - b) Give one example of existing/in development drugs in each of these categories which involved the active use of principles of structure-based design.
 - Itemize 6 key scientific-technological developments in the field of drug discovery and development that led to the developing and increasingly widespread acceptance of this field.
 - d) Use one of the examples you have cited above to draw up a flowchart of the steps involved in structure based drug design. How does structure based drug design fit in to simplify the clinical trials part of the drug development process.

- 12. a) What is a hydrophobicity profile? Why is analysis of hydrophobicity profiles important in the context of bioinformatics and drug discovery? Draw a prototypical hydrophobicity profile for HEWL (hen egg white lysozyme). What is the significance of the minima in a hydrophobicity profile? 1 + 2 + 1 + 2
 - b) The $\log \left(1/K_i\right)$ of two substituted phenyl-based inhibitors was determined and expected to be a simple linear function of hydrophobicity : $\log \left(1/K_i\right) = a\pi + c$. Use the data below to develop the corresponding QSAR equation.

Substituent	$\log (1/K_i)$	π
n-butyl	8.24	2.52
F	7.06	0.63

- c) Interpret the answer in (b) above in terms of what you have written in (a) above.
 - [Be specific in answering parts (a) and (c) of this question]
- 13. a) For finding treatments for diseases, the importance of structure prediction in proteins has acquired significance. Pointwise explain 3 key reasons how structure prediction helps in this process.
 - b) What are the methods normally adopted for prediction of protein structure?
 - c) Explain the principles and algorithm of any one method of predicting protein-protein interaction that uses Monte Carlo simulation.

14. A classical QSAR attempts to set up a correlation between an experimental property A (e.g. activity) with calculated structural parameters a, b, c in an equation of the form

 $\log A = x_1 a + x_2 b + x_3 c + \dots + \text{constant.} \qquad \text{Equation 1}$

- a) What are the properties of molecules such as A basedon?
- b) What sort of mathematical representations does a, b, c have?
- c) If Equation 1 is found to be valid, then what can it be used for?
- d) What is the primary use of Equation 1 in the context of drug discovery? What physico-chemical properties of a drug do the parameters in Equation 1 above attempt to measure normally?
- e) What standard statistical methods have been classically used to validate QSAR equations like 1 above? 2
- f) What is the calculated log P value for the long known anti-cancer drug diethylstibesterol (hint : it has 2 methyl groups, two CH_2 linkages, one ethylenic linkage, and a phenolic moiety; π for methyl and methylene = 0.50, for ethylenic linkage = 0.69 and log P is 1.46 for phenolic group; use standard correction factor).

CS/M.Tech (BT)/SEM-2/MBC 203/2010

- 15. a) In molecular dynamics simulations, the total conformational entropy of a biomolecule is typically computed by the method of isomer counting. An alternative method of computation is normal mode analysis to find out how rigid a particular structure is. How is kinetic energy specifically defined in this model?

 Which biological macromolecular system has the normal mode analysis been applied to?

 3 + 2
 - b) What are 3 force fields that have been commonly employed for biological applications? What macromolecular systems were these force fields utilized for? How are electrostatic interactions treated in these force fields? 2 + 1 + 2
 - c) Gatifloxacin is a methoxyfluoroquinolone that is used as an ophthalmic solution. What are the normal pharmacokinetic parameters that are used to decide dosage/frequency of administration for this drug? How can these terms be incorporated in a generalized QSAR equation? $2\frac{1}{2} + 2\frac{1}{2}$

- 16. a) How is a transition and emission probability chart in a 2-state set-up for analyzing DNA sequences using a partial HMM?
 - b) Draw a typical architecture of a hidden Markov model that represents a multiple sequence alignment. Explain the meaning of the symbols used.
 - c) A score matrix is constructed from a simple HMM to define optimal score paths. Different dynamic programming algorithms are used to construct a score matrix. Explain the procedure by which the Viterbi algorithm develops a score matrix for multiple sequence alignment.
- 17. What is the basis for DNA interactive drugs? What is the toxicity of DNA interactive drugs? Outline one numerical method for measuring the toxicity profile of a DNA-interactive drug. Name the three classes of drugs that interact with DNA. Give one example of a drug within each category. Use one example from within any of the three classes of DNA-interactive drugs to highlight how principles of structure based drug design have been used/could be used for lead modification and optimization.

 2 + 2 + 3 + 4 + 4