Name :	<u> </u>
Roll No. :	
Invigilator's Signature :	

CS/M.Tech (BT)/SEM-1/MBT-102/2011-12 2011 BIOPHYSICAL CHEMISTRY

Time Allotted : 3 Hours

Full Marks : 70

The figures in the margin indicate full marks. Candidates are required to give their answers in their own words as far as practicable.

GROUP – A

(Multiple Choice Type Questions)

- 1. Choose the correct alternatives for any *ten* of the following : $10 \times 1 = 10$
 - i) The probability P_j of observing a particular state J of a system is given by
 - a) $P_j = g_j \omega_j / Q$ b) $P_j = g_j \omega_j^2 / Q$
 - c) $P_j = g_j / Q$ d) $P_j = g_j \omega_j$.
 - ii) Cryoelectron microscopy can resolve structures up to
 - a) 1.2 nm b) 0.7 nm
 - c) 0.1 nm d) 1.7 nm.
 - iii) At any time, the instantaneous kinetic energy, K of an atom is defined by

a)
$$K = \frac{7}{6}k_BT$$
 b) $K = 3k_BT$
c) $K = 11k_BT$ d) $K = 13k_BT$.

40512

- iv) In AFM, the force experienced by the tip cantilever is given by
- 2 d by the tips on the $f = Z \sin \theta / \lambda$
 - a) $y = ax^2 + bx + c$ b)
 - c) $T = 0.9 \lambda / \beta \cos \theta_B$ d) $F = K.\delta z$.
- v) One of the equations representing Von Laue conditions of diffraction is given by
 - a) a.S = h
 - b) $S = ha^* + kb^* + lc^*$
 - c) $I\lambda = c(\cos \gamma \cos \gamma_0)$
 - d) $2 \sin \theta / \lambda = n/d = |S|.$
- vi) In fluorescence sensing, the spectral observable(s) is/are
 - a) anisotropy b) time
 - c) phase modulation d) all of these.
- vii) Single molecule techniques are ideal for studying which of the following aspects of molecular behaviour ?
 - a) Specific molecules may exhibit individual static differences in structure, reactivity or function
 - b) Individual molecules may show dynamic changes in function due to spontaneous structural fluctuations
 - c) Individual molecules may show ensemble like properties
 - d) (a) & (b).
- viii) The range of wavelength for the *uv* region is
 - a) 40 400 nm b) 200 400 nm
 - c) 20 400 nm d) 200 300 nm.

- CS/M.Tech (BT)/SEM-1/MBT-102/2011-12
- ix) Carboxyfluorescein is a typical energy transfer DNA sequencing probe whose excitation and emission are given by
 - a) 495/525 nm b) 525/555 nm
 - c) 555/580 nm d) 575/602 nm.
- x) The exponential decay of the FID gives the
 - a) relaxation time with T_2 predominating
 - b) relaxation time with T_1 predominating
 - c) full width at half maximum
 - d) NMR absorption peak.
- xi) The turbidity τ to describe "conventional" light scattering is given by

a) $\tau = -\ln I / I_0$ b) $\tau = I - I_0$

c) $\tau = 4\pi \rho_0 / r^3$ d) $\tau = KC/R_0$.

GROUP – B

(Short Answer Type Questions)

Answer any *three* of the following. $3 \times 5 = 15$

2. Calculate the intrinsic fluorescence lifetime of Tryptophan,

 τ_0 . If the quantum yield q for tryptophan in a protein is 0.3, what will be the corresponding lifetime, τ ? (Assume A, the Einstein coefficient for spontaneous fluorescence =1.1×10⁸ molecule sec⁻¹) $2\frac{1}{2} + 2\frac{1}{2}$

40512

CS/M.Tech (BT)/SEM-1/MBT-102/2011-12

- 3. What is the basis of oxygen sensing by collisional fluorescence quenching ? Highlight your answer with equations and examples. 2 + 3
- 4. The absorbance of a 10 μ M solution of tryptophan in buffer at 280 nm is 0.06. The buffer alone gives an absorbance of 0.04 at 280 nm. Assuming a path length of 1 cm, calculate the extinction coefficient of tryptophan. What are the expected absorbance values for path lengths of 1, 2 and 20 nm? 2 + 3
- Zipper models have been used to explain coil-to-helix 5. transitions in polypeptides and melting/annealing of polynucleic acids DNA. Graphically illustrate and (i) the T-dependent coil-to-helix transition in poly [γ -benzyl-L-glutamate] (ii) melting and annealing curves $2\frac{1}{2} + 2\frac{1}{2}$ of dsDNA.
- 6. Draw and label appropriate energy level diagrams for ruby and Nd-YAG lasers.

40512

- 7. a) For a 3 atom nonlinear molecular system, depict the fundamental in-plane and out-of-phase vibrations for three non-linear atoms.
 3
 - b) Derive the transition dipole expression from the wave function of the dynamics of a particular vibration. 4
 - c) Draw a line diagram of an FT-IR spectrometer. 4
 - d) Using an appropriate macromolecular example, explain how FT-IR has been used to study hydrogen bonding in solution (use representative IR spectral signatures and intensity plots in your answer).
- 8. a) Use a table to represent the natural abundance, relative sensitivity and approximate range of chemical shifts of 1 H, 13 C and 15 N. Explain why the 13 C spectra contain fewer lines than proton spectra and why the number of lines would increase as the abundance of 13 C is increased. What kind of NMR spectral changes might accompany dimerization of a protein ? 3 + 2 + 2

5

40512

CS/M.Tech (BT)/SEM-1/MBT-102/2011-12

- b) The dipole moment of a peptide bond is 3.7 debye in water. Assuming that a dipole bond is essentially a dipole-dipole interaction, estimate the energy of a hydrogen bond between two peptides in water and in the interior of a protein (neglect competing interactions with the solvent).
- c) The optimal distance for the van der Waals interaction between two carbonyl atoms is $r_0 = 0.353$ nm. The energy for this interaction is 21.56 kJ/mol.
 - i) Estimate the repulsive parameter *A* and dispersion parameter *B* for the Lennard Jones 6-12 potential.
 - ii) Calculate the energy at r = 0.44 nm and r = 0.6 nm using parameters in (i) above. 4

9. a) Derive Bragg's law of diffraction. 3

- b) Briefly enumerate 3 important limitations of Bragg's law.
 3
- c) Explain the methods of vapour diffusion and microdialysis developed to facilitate macromolecular crystallization.
 3
- 40512

CS/M.Tech (BT)/SEM-1/MBT-102/2011-12
d) What are the two distinct steps involved in protein single crystal growth ?

e) Define reciprocal space. 3

- 10. AFM is a technique that has become widely used for both the observation and manipulation of biological macromolecules at the single molecule level.
 - a) Draw a schematic diagram of an atomic force microscope labelling the different parts and essential operational details.
 - b) How is the motion of RNA polymerase on DNA observedby AFM ? How are questions regarding transcriptionanswered on the basis of these results ? 5
 - c) A theoretical model for measurement of end-to-end distance of a stretched chain (*X*) in a biopolymer to analyze atomic force microscope data is given by

$$X = L_0 \left[1 - \frac{1}{2} \left(k_B T / F L_p \right)^{1/2} + F / K \right].$$

Define all the terms in the above expression and what the various terms represent in terms of physicomechanical interactions. 6

40512

- 11. a) A protein was labelled with a fluorescent dye and the latter has a fluorescence lifetime of 7.0 m sec. How was the lifetime measured?
 - b) The same protein also has two sites to which fluorescent labels can be attached. R_0 is 2.3 nm for the pair used. Energy transfer efficiency is about 0.015. Estimate the distance between the labels.
 - c) Calculate the decay of ballistic light after penetrating a tissue 40 mfp thick. If the scattering coefficient of the tissue is 100 cm⁻¹, calculate the corresponding thickness of the tissue in cm. How does resolution of pure laser imaging vary with tissue thickness ? For good quality medical optical computed tomography (OCT) images, name two techniques employed to overcome challenges presented by scattering phenomena.

 $4 + 1\frac{1}{2} + 1\frac{1}{2}$

40512