	Utech
Name:	
Roll No.:	A Spring Of Exercising and Explana
Invigilator's Signature :	

CS/M.TECH (BT)/SEM-1/MBT-115D/2011-12 2011

ADVANCES IN BIOREACTOR DESIGN, DEVELOPMENT AND SCALE-UP

Time Allotted: 3 Hours Full Marks: 70

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

GROUP - A

(Multiple Choice Type Questions)

1. Choose the correct alternatives for any *ten* of the following :

 $10 \times 1 = 10$

- i) A reactor may be assumed as plug flow if the flow is
 - a) laminar
- b) turbulent
- c) streamline
- d) viscous flow.
- ii) RTD curve due to pulse input gives rise to
 - a) asymptotic curve
 - b) hyperbolic curve
 - c) bell-shaped curve
 - d) normal distribution curve.

40534 [Turn over

CS/M.TECH (BT)/SEM-1/MBT-115D/2011-12

iii) Volumetric mass transfer coefficient, K_{Lc} column is given as a function of P/Va) b) V_{qs} c) Re, d) Combination of (a) & (b). iv) Anti-biotics are best produced in, type of the reactor. Packed bed Bubble column a) b) c) **CSTR** d) Air-lift fermenter. The kinetics of vaccine production is based on the v) model of a) growth associated b) non-growth associated c) a combination of (a) and (b) Monod model d) Low flow rate of a gas is measured by vi) b) Orificemeter a) rotameter c) wet gas meter d) thermo-anemometer. vii) Trickel bed reactor is characterized by mass transfer a) b) low L/D ratio combination of (a) and (b) c)

d)

small flow rate of liquid.

viii)	Cell suspension is a non-Newtonian fluid of the type					
	a)	Bingham plastic	b)	Pseudo plastic		
	c)	Dilatant	d)	Cassar equation.		
ix)	Mon	od Model behaves as	a rea	action of the		
	type for small substrate concertration.					
	a)	first order	b)	zero order		
	c)	second order	d)	pseudo first order.		
x)	Perfusion reactor is used for the production of					
	a)	antibiotics				
	b)	alcohol				
	c)	monoclonal antibodies				
	d)	single cell protein.				
xi)	The	criterion for the selec	ction	of animal cell culture		
	reactor is					
	a)	low shear rate				
	b)	removal of toxic metao	lites			
	c) combination of (a) and (b)					
	d)	high cell mass concent	ratio	n.		
xii)	The	scale-up criterion for a	CST	`R to be used for animal		
	cell culture is based on					
	a)	geometric similarity				
	b)	equal P/V				
	c)	equal tip velocity				
	d)	equal impeller based R	eyno	olds No., Re _I		

GROUP - B

(Short Answer Type Questions)

2. In a CSTR, efficient mixing is achieved if the eddy size, created by a turbine impeller is approximately 80 μ m. The impeller diameter, $D_I=0.3$ m.

Calculate the power to be generated by the stirrer for desired degree of mixing. Given, $\lambda = \left(\frac{\gamma}{\square}\right)^{1/4}$, where γ is the kinematic viscosity of the liquid, \square is the energy dissipated per unit mass of the fluid.

 μ = 1 ∞ 10 $^{-3}~$ Pas and ρ (density) = 1000 kg/m 3 .

- Describe the important features of a stirred tank reactor with respect to efficient mixing.
- 4. The scaled-up volume of a reactor is 100 m 3 from 0.1 m 3 reactor with L/D = 3. The impeller diameter, $D_I = 0.3$ D.

If the agitator speed of the small reactor is 600 rpm, what is the agitator speed of the bigger reactor, on the basis of equal mixing time, $t_{\it m}$?

40534 4

5. At room temperature sucrose (A) is hydrolysed by the enzyme sucrase (E) as follows :

$$A = \frac{\text{Enzyme}}{\mathscr{O}} \text{ products}$$

Given data:

C _A (mol./m ³)	0.68	0.16	0.006
t, hr	2	6	10

At
$$t = 0$$
, $C_{Ao} = 1.0 \text{ mole/m}^3$, $C_{Eo} = 0.01 \text{ mole/m}^3$.

The rate equation is
$$\frac{-dC_A}{dt} = \frac{V_{max} C_A}{k_m + C_A}$$

Linearise the rate equation after integration to find $v_{\it max}$ and $k_{\it m}$ (the kinetic parameters) .

6. Derive the following relation from Michaelis-Menten Enzyme kinetic relation :

$$V_{max} t = S_o - S + k_m \ln S_o / S$$

GROUP - C

(Long Answer Type Questions)

Answer any *three* of the following. $3 \times 15 = 45$

7. a) A Bubble Column reactor of volume 1 m 3 ($\frac{L}{D_t}$ = 5) is agitated by sparging air from the bottom at the rate of 0.02 m 3 /s at 1.08 bar and 25°C. The santer mean diameter of bubbles is D_{32} = 3 mm and hold-up,

 \prod_{G} = 0.05. Calculate the following

i) bubble rise velocity, m/s

CS/M.TECH (BT)/SEM-1/MBT-115D/2011-12

- ii) interfacial area, a (m^2 / m^3)
- iii) volumetric mass transfer coefficient, k_{La} , given $k_{La} = 0.32 \; (v_{as})^{0.7} \; \sec^{-1} \; .$
- b) Describe the operation of an air-lift fermentor which is to be used for animal cell culture. 8 + 7
- 8. a) How do you correlate the cell mass growth with oxygen consumption in terms of kinetic parameters and volumetric mass transfer coefficient k_{La} ?
 - b) The volumetric mass transfer coefficient, k_{La} of a small bubble column reactor (2 L) has been measured as 15 hr⁻¹ at an airflow rate of 4 l/min. If the rate of oxygen uptake by a culture of some plant cells is 0·2 mmol (g.dry wt) (hr) and the critical oxygen concentration is 10% of the saturation (8 ppm). What is the maximum concentration of cells that can be maintained in the reactor?
- 9. a) What are the methods of modelling non-ideal reactors?

 Describe the tanks-in-series model with its performance equation assuming first order kinetics.
 - b) What are the merit and demerits of a hollow fibre reactor for animal cell culture? 8 + 7
- 10. a) What is power law model to be used for Non-Newtonin fluids? Classify the types of Non-Newtonian fluids by drawing shear stress (τ) and shear rate (γ) diagram.
 - b) Small laboratory PFR gives 80% conversion of A for a first order reaction of the type, $A \varnothing R$, with residence time, T=15 mins. If the same reaction is carried out in a large reactor whose tracer date due to pulse input tracer gave $\sigma_B^2=0.2$ and E=15 min. Calculate X_A from dispersion model for small deviation for plug flow.

7 + 8

40534 6

- 11. a) An enzyme has a k_m of 4.7×10^{-5} M. If the V_{max} of the preparation is 22 μ mole/lit min. What velocity would be observed in the presence of 2×10^{-4} M substrate and 5×10^{-4} M of (a) a competitive inhibitor, (b) a non-competitive inhibitor, (c) an uncompetitive inhibitor k_i in all three cases is 3×10^{-4} M. (d) What is the degree of inhibition in all three cases?
 - b) What is the relative activity and degree of inhibition caused by a competitive inhibitor when $[S] = k_m$ and $[I] = k_i$?
- 12. a) One microgram of a pure enzyme (MW = 92,000) catalyzed a reaction at a rate of $0.50~\mu$ moles/min under optimum conditions. Calculate (a) the specific activity of the enzyme in terms of units/mg protein and units/mole, and (b) the turnover number, (c) how long is one catalytic cycle ?
 - b) An enzyme was assayed at an initial substrate conc. of 2×10^{-5} M. In 6 min. half of the substrate had been used. The k_m for the substrate is 5×10^{-3} M. Calculate k, v_{max} and conc. of product produced after 15 min.
 - c) $A \varnothing R$, $-r_A = \frac{200 C_A C_{Eo}}{2 + C_A}$, in a batch reactor

 $C_{E_0} = 0.001 \text{ mol/lit, initial enzyme conc.}$

 $C_{Ao} = 10 \text{ mol/lit.}$

Time required for the conc. of reactant to drop to 0.025 mol/lit. 5+5+5