Name :
 Roll No.
 \qquad
 Invigilator's Signature :

 CS/M.Tech (AEIE)/SEM-1/EIEM-102/2012-13 2012
 SIGNAL AND SYSTEMS

Time Allotted: 3 Hours Full Marks : 70

The figures in the margin indicate full marks.
Candidates are required to give their answers in their own words as far as practicable.

Answer any five of the following $5 \times 14=70$

1. a) Find the convolution of two finite duration sequences $h(n)=a^{n} u(n)$ and $x(n)=b^{n} u(n)$ for all n when $a \neq b$.
b) The block diagram representation of an LTI system is shown below. Determine the difference equation relating $y(n)$ and $x(n)$. 6

CS/M.Tech (AEIE)/SEM-1/EIEM-102/2012-13
c) An LTI system is characterized by the system function $H(z)=\frac{3-4 z-1}{1-3 \cdot 5 z^{-1}+1 \cdot 5 z^{-1}}$.

CH20

Specify the ROC of $H(z)$ and determine $h(n)$ for the following conditions :
i) System is stable
ii) System is causal
2. a) A causal LTI system with input $x(n)$ and output $y(n)$ is described by the following difference equation.
$y(n)=y(n-1)+y(n-2)+x(n-1)$
i) Plot the poles and zeros of the system
ii) Find the unit sample response of the system.
iii) Comment on the stability of the system with justification.
b) Find inverse z-transform of $X(z)=\frac{z\left(z^{2}-4 z+5\right)}{(z-1)(z-2)(z-3)}$ for ROC
(i) $2<|z|<3$
(ii) $|z|>3$
(iii) $|z|<1$
3. a) What is zero padding ? Mention the application of zero padding.
b) Find out the output of a system with inpulse response $h(n)=\{1,-3,4,0,2\}$ subjected to the input sequence $x(n)=\{3,-1,4\}$ using circular convolution method. 6
c) Find the output of a system with impulse response $h(n)=\{1,2\}$ for an input sequence $x(n)=\{1,2,-1,2,3,-2,-3,-1,1,1,2,1\}$ using overlap-add method. 6
4. a) Find the DFT of a sequence $x(n)=\{1,2,3,4,4,3,2,1\}$ using radix 2 DIT-FFT algorithm.

b) A system is characterized by the impulse response $h(n)=\left(\frac{1}{2}\right)^{n} u(n)$. Determine the output sequence subjected to the input sequence
$x(n)=10-5 \sin \left(\frac{\pi}{2} n\right)+20 \cos (\pi n)$ when $-\infty<n<\infty$
5. a) What is warping effect in IIR filter design using Bilinear Transform ? How can it be eliminated ? 3
b) Determine the order and poles of a type I lowpass Chebyshev filter that has a 1 dB ripple in the pass band and the pass band frequency $\Omega_{p}=1000 \pi$, a stop band frequency 2000π and an attenuation of 40 dB or more. 4
c) Design a high pass filter monotonic in pass band with cut-off frequency 1000 Hz and down 10 dB at 350 Hz using bilinear transform. Sampling frequency is 5 kHz .
6. a) Realize the system given be the difference equation $y(n)=-0.1 y(n-1)+0.93 y(n-2)+0.6 x(n)-0.543 x(n-2)$ in parallel form.
b) A two-pole low pass filter has system function $H(z)=\frac{b_{0}}{\left(1-p z^{-1}\right)^{2}}$. Determine the value of b_{0} and p such that the frequency response satisfies the condition $H(0)=1$ and $\left|H\left(\frac{\pi}{4}\right)\right|^{2}=\frac{1}{2}$

CS/M.Tech (AEIE)/SEM-1/EIEM-102/2012-13
c) Design a FIR filter of length 3 for an inpût signal $x(n)=\cos (0.1 n)+\cos (0.4 n)$ to retain the higher frequency.
7. a) Design an ideal high pass FIR filter with frequency response

$$
H_{d}\left(e^{j \omega}\right)= \begin{cases}1 & \text { for } \frac{\pi}{4} \leq \omega \leq \pi \\ 0 & \text { for } \omega \leq \frac{\pi}{4}\end{cases}
$$

Find the value of $h(n)$ for $N=11$.
b) Derive state space representation of the causal LTI system given below :

$$
y(n)=-\sum_{k=1}^{4} a_{k} y(n-k)+\sum_{k=0}^{4} b_{k} x(n-k)
$$

8. a) The state model of a system is given by

$$
\left[\begin{array}{l}
\dot{x}_{1} \\
\dot{x}_{2}
\end{array}\right]=\left[\begin{array}{rr}
1 & 1 \\
-3 & -2
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]+\left[\begin{array}{l}
0 \\
1
\end{array}\right][u]
$$

Find
i) the characteristic equation and eigenvalues of the system
ii) the transfer function $\frac{Y(s)}{U(s)}$
iii) the state transition matrix
iv) the state equation for a unit step input under zero initial conditions.

9
b) Realize the first order transfer function $H(z)=\frac{1}{1-a z^{-1}}$ and draw its quantization noise model. Find the steady state noise power due to product round-off.

