	Utech
Name:	\$
Roll No.:	The Alaman Will Samueladay Stade Carelland
Inviailator's Sianature :	

CS/M.Tech (AEIE)/SEM-1/EIEM-102/2012-13

2012 SIGNAL AND SYSTEMS

Time Allotted: 3 Hours Full Marks: 70

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

Answer any *five* of the following $5 \times 14 = 70$

- 1. a) Find the convolution of two finite duration sequences $h(n) = a^n u(n)$ and $x(n) = b^n u(n)$ for all n when $a \neq b$.
 - b) The block diagram representation of an LTI system is shown below. Determine the difference equation relating

40524 [Turn over

CS/M.Tech (AEIE)/SEM-1/EIEM-102/2012-13

c) An LTI system is characterized by the system function $H(z) = \frac{3-4z-1}{1-3\cdot5z^{-1}+1\cdot5z^{-1}}.$

Specify the ROC of H (z) and determine h (n) for the following conditions :

- i) System is stable
- ii) System is causal

4

2. a) A causal LTI system with input x (n) and output y (n) is described by the following difference equation.

$$y(n) = y(n-1) + y(n-2) + x(n-1)$$

- i) Plot the poles and zeros of the system
- ii) Find the unit sample response of the system.
- iii) Comment on the stability of the system with justification. 2 + 4 + 2
- b) Find inverse z-transform of $X(z) = \frac{z(z^2 4z + 5)}{(z-1)(z-2)(z-3)}$

for ROC

- (i) 2 < |z| < 3
- (ii) |z| > 3

(iii)
$$|z| < 1$$

6

- 3. a) What is zero padding? Mention the application of zero padding.
 - b) Find out the output of a system with inpulse response $h(n) = \{1, -3, 4, 0, 2\}$ subjected to the input sequence $x(n) = \{3, -1, 4\}$ using circular convolution method. 6
 - c) Find the output of a system with impulse response $h(n) = \{1, 2\}$ for an input sequence $x(n) = \{1, 2, -1, 2, 3, -2, -3, -1, 1, 1, 2, 1\}$ using overlap-add method.

40524

- Find the DFT of a sequence $x(n) = \{1, 2, 3, \dots \}$ 4. a) using radix 2 DIT-FFT algorithm.
 - b) A system is characterized by the impulse response $h(n) = \left(\frac{1}{2}\right)^n u(n)$. Determine the output sequence subjected to the input sequence $x(n) = 10 - 5 \sin\left(\frac{\pi}{2}n\right) + 20 \cos(\pi n)$ when $-\infty < n < \infty$

What is warping effect in IIR filter design using Bilinear 5. a) Transform? How can it be eliminated?

- Determine the order and poles of a type I lowpass b) Chebyshev filter that has a 1 dB ripple in the pass band and the pass band frequency $\Omega_p = 1000\pi$, a stop band frequency 2000π and an attenuation of 40 dB or more. 4
- Design a high pass filter monotonic in pass band with c) cut-off frequency 1000 Hz and down 10 dB at 350 Hz using bilinear transform. Sampling frequency is 5 kHz.

Realize the system given be the difference equation 6. $y(n) = -0.1 \ y(n-1) + 0.93y(n-2) + 0.6x(n) - 0.543x(n-2)$ in parallel form. 5

A two-pole low pass filter has system function b) $H(z) = \frac{b_0}{(1-pz^{-1})^2}$. Determine the value of b_0 and p

such that the frequency response satisfies the condition $H(0) = 1 \text{ and } |H(\frac{\pi}{4})|^2 = \frac{1}{2}$ 4

40524 3 [Turn over

7

8

CS/M.Tech (AEIE)/SEM-1/EIEM-102/2012-13

8

- c) Design a FIR filter of length 3 for an input signal $x(n) = \cos(0.1n) + \cos(0.4n)$ to retain the higher frequency.
- 7. a) Design an ideal high pass FIR filter with frequency response

$$H_d(e^{j\omega}) = \begin{cases} 1 & \text{for } \frac{\pi}{4} \le \omega \le \pi \\ 0 & \text{for } \omega \le \frac{\pi}{4} \end{cases}$$

Find the value of h(n) for N = 11.

b) Derive state space representation of the causal LTI system given below:

$$y(n) = -\sum_{k=1}^{4} a_k y(n-k) + \sum_{k=0}^{4} b_k x(n-k)$$

8. a) The state model of a system is given by

$$\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ -3 & -2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} [u]$$

Find

- i) the characteristic equation and eigenvalues of the system
- ii) the transfer function $\frac{Y(s)}{U(s)}$
- iii) the state transition matrix
- iv) the state equation for a unit step input under zero initial conditions.
- b) Realize the first order transfer function $H(z) = \frac{1}{1 az^{-1}}$ and draw its quantization noise model. Find the steady state noise power due to product round-off.

4

40524