

CS/M.TECH(AEIE)/SEM-1/EIEM-100(AM)/2011-12 2011

ADVANCED ENGINEERING MATHEMATICS
Time Allotted: 3 Hours
Full Marks : 70

The figures in the margin indicate full marks.

$$
\text { Answer any five questions. } \quad 5 \times 14=70
$$

1. a) Find the analytic function $f(z)=u+i v$ whose imaginary part is $v=e^{x} \sin y$. 7
b) Evaluate $\int_{C} \bar{z} \mathrm{~d} z$ from $z=0$ to $z=4+2 i$ along the curve C given by
i) the straight line joining $z=0$ to $z=4+2 i$
ii) along the straight line from $z=0$ to $z=2 i$
iii) along the straight line from $z=2 i$ to $z=4+2 i$

$$
2+2+3
$$

2. a) Expand $f(z)=\frac{1}{1+2 z}$ in a Taylor series about the origin.
b) Evaluate $\int_{c} \frac{z^{2}+6 z-1}{z-4} d z$ if c is
i) $c:|z|=5$
ii $c:|z|=1 / 2$
3. a) Prove that $\lim _{(x, y) \rightarrow(0,0)} \frac{x y}{x^{2}+y^{2}}$ does not exist.
b) Verify that the double limit $\lim _{(x, y) \rightarrow(0,0)} \frac{x+y}{x-y}$ does not exist. Prove that repeated limits exist.
c) Let $F(x, y)=x^{2}+y^{2}-1$ and a point $(0,1)$. Verify implicit function theorem.
4. a) Examine the curve $y^{2}(1+x)=x^{2}(1-x)$ for singular points at the origin.
b) Examine the maxima and minima of the function $f(x, y)=2 x^{2}-x y+2 y^{2}-20 x$
c) If $u=a^{3} x^{2}+b^{3} y^{2}+c^{3} z^{2}$, where $\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=1$, prove that a stationary value is given by $a x=b y=c z$ and this gives a maximum or a minimum, if $a b c(a+b+c)$ is positive. Solve the problem by Lagrange's multiplier method. 6

b) Construct the difference table and find the value of $y(3,4)$ using Newton's divided difference formula from the following table :

$x:$	2.5	2.8	3.0	3.1	3.6
$y:$	12.1825	16.4446	20.0855	22.1980	36.5982

6. a) Find the root of the equation $x e^{x}-3=0$ that lies between 1 and 2, correct to 4 significant figures using the method of false position
b) Compute $y(0.4)$, from the differential equation $\frac{\mathrm{d} y}{\mathrm{~d} x}=x-y, \quad y(0)=1$, taking $h=0 \cdot 1$, by Runge-Kutta method, correct to 5 decimal places.
7. a) Let V be a real vector space with $\{a, b, c\}$ as a basis. Prove that the set $\{a+b+c, b+c, c\}$ is also a basis of V.
b) Find a basis and the dimension of the subspace W of R^{3} where $W=\left\{(x, y, z) \in R^{3}: x+2 y+z=0,2 x+y+3 z=0\right\}$
c) Check whether the vectors $(1,1,1),(2,-1,0)$ and $(5,3,9)$ are linearly independent in R^{3}.
8. a) Prove that if λ is an eigenvalue of a non-singular matrix A, then $\frac{1}{\lambda}$ is an eigenvalue of A^{-1}.

b) Determine whether $S=\{(x, y, z): x+2 y+5 z=k, k \neq 0\}$ is a subspace of R^{3}. Justify. 6
c) Prove that if S_{1} and S_{2} are subspaces of a vector space V, then $S_{1} \cap S_{2}$ is also a subspace of V. 4
