	<u> </u>
Name:	
Roll No.:	In Among Williamshiles and Explicat
Inviailator's Sianature :	

CS/M.TECH(AEIE)/SEM-1/EIEM-100(AM)/2011-12 2011

ADVANCED ENGINEERING MATHEMATICS

Time Allotted: 3 Hours Full Marks: 70

The figures in the margin indicate full marks.

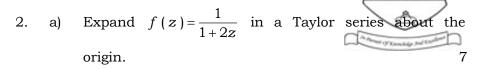
Answer any *five* questions. $5 \times 14 = 70$

- 1. a) Find the analytic function f(z) = u + iv whose imaginary part is $v = e^x \sin y$.
 - b) Evaluate $\int_{C} \overline{z} dz$ from z = 0 to z = 4 + 2i along the curve C given by
 - i) the straight line joining z = 0 to z = 4 + 2i
 - ii) along the straight line from z = 0 to z = 2i
 - iii) along the straight line from z = 2i to z = 4 + 2i

2 + 2 + 3

40506 [Turn over

CS/M.TECH(AEIE)/SEM-1/EIEM-100(AM)/2011-12



- b) Evaluate $\int_{c}^{c} \frac{z^2 + 6z 1}{z 4} dz$ if c is
 - i) c: |z| = 5
 - ii c: |z| = 1/2 3 + 4
- 3. a) Prove that $\lim_{(x,y)\to(0,0)} \frac{xy}{x^2+y^2}$ does not exist. 4
 - b) Verify that the double limit $\lim_{(x,y)\to(0,0)} \frac{x+y}{x-y}$ does not exist. Prove that repeated limits exist.
 - c) Let $F(x,y) = x^2 + y^2 1$ and a point (0, 1). Verify implicit function theorem.
- 4. a) Examine the curve $y^2(1+x) = x^2(1-x)$ for singular points at the origin.
 - b) Examine the maxima and minima of the function $f(x,y) = 2x^2 xy + 2y^2 20x$

4

c) If $u = a^3x^2 + b^3y^2 + c^3z^2$, where $\frac{1}{x} + \frac{1}{y} + \frac{1}{z} = 1$, prove that a stationary value is given by ax = by = cz and this gives a maximum or a minimum, if abc(a + b + c) is positive. Solve the problem by Lagrange's multiplier method.

40506 2

CS/M.TECH(AEIE)/SEM-1/EIEM-100(AM)2011-12

5. a) Use Lagrange's interpolation formula to fit a polynomial to the following data. Hence find the value of y for x = 5.4, correct to 5 significant figures.

x: 5.0 5.1 5.3 5.5 5.6

y: 0.28366 0.37798 0.55437 0.70867 0.77557

b) Construct the difference table and find the value of y (3, 4) using Newton's divided difference formula from the following table:

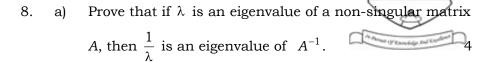
x: 2.5 2.8 3.0 3.1 3.6

y: 12.1825 16.4446 20.0855 22.1980 36.5982

- 6. a) Find the root of the equation $xe^x 3 = 0$ that lies between 1 and 2, correct to 4 significant figures using the method of false position.
 - b) Compute y (0·4), from the differential equation $\frac{\mathrm{d}y}{\mathrm{d}x} = x y, \ y$ (0)=1, taking h = 0.1, by Runge-Kutta method, correct to 5 decimal places.
- 7. a) Let V be a real vector space with $\{a, b, c\}$ as a basis. Prove that the set $\{a + b + c, b + c, c\}$ is also a basis of V.
 - b) Find a basis and the dimension of the subspace W of R^3 where $W = \{(x, y, z) \in R^3 : x + 2y + z = 0, 2x + y + 3z = 0\}$

c) Check whether the vectors (1, 1, 1), (2, -1, 0) and (5, 3, 9) are linearly independent in \mathbb{R}^3 .

CS/M.TECH(AEIE)/SEM-1/EIEM-100(AM)/2011-12



- b) Determine whether $S = \{(x, y, z): x + 2y + 5z = k, k \neq 0\}$ is a subspace of \mathbb{R}^3 . Justify.
- c) Prove that if S_1 and S_2 are subspaces of a vector space V, then $S_1 \cap S_2$ is also a subspace of V.

=========

40506 4