	/ Utech
Name:	
Roll No.:	Town or Complete and Conferred
Invigilator's Signature :	

CS/M.Sc.(SE)/SEM-2/MI-205/2013 2013

INFORMATION THEORY

Time Allotted: 3 Hours Full Marks: 70

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

GROUP - A

(Multiple Choice Type Questions)

1. Choose the correct alternatives for the following:

 $10 \times 1 = 10$

- i) Which of the following is the simplest error-detection method?
 - a) Parity
 - b) Longitudinal redundancy checking
 - c) Checksum checking
 - d) Cyclic redundancy checking.
- ii) Which type of error detection uses binary division?
 - a) Parity
 - b) Longitudinal redundancy checking
 - c) Checksum checking
 - d) Cyclic redundancy checking.

30591 (M.Sc. Info.Sc.)

[Turn over

- iii) Which of the following is also called forward error correction?
 - a) Simplex
 - b) Retransmission
 - c) Detection-error coding
 - d) Error-correction coding.
- iv) The failure density function, f(t) is used to give the probability of failure during an interval of time. It is known as
 - a) Probability density distribution
 - b) Cumulative probability distribution
 - c) Cumulative density distribution
 - d) Failure probability distribution.
- v) The error represented by the difference between the original and quantized signals set a fundamental limitation to the performance of PCM systems known as
 - a) dynamic range
- b) quantization noise
- c) detection-error
- d) correction-error.
- vi) Automatic Repeat request (ARQ) mechanism is
 - a) whenever one side sends a message to another, the other side sends a short acknowledgement (ACK) message back
 - b) ARQ is especially useful in cases of dealing with detecting errors
 - c) an ARQ scheme can be added to guarantee delivery if a transmission error occurs
 - d) all of these.

- vii) Capacity of a system is
 - a) the number of signal levels = 2^n
 - b) the number of signal levels = n^2
 - c) the number of signal levels = 2^{n+1}
 - d) none of these.
- viii) In Shannon's Theorem the capacity of a system in the presence of noise is
 - a) $C = B \log_2 (1 + SNR)$
 - b) $C = B \log_2 (1 + SNR)$
 - c) $C = B \log_2$
 - d) none of these.
- ix) Entropy of X conditional on knowing Y is
 - a) $H(X \mid Y) = H(X, Y) H(Y)$
 - b) H(X | Y) = H(Y) + H(X, Y)
 - c) $H(X \mid Y) = H(Y) \times H(X, Y)$
 - d) none of these.
- x) Huffman code is a
 - a) Prefix code
- b) Infix code
- c) Postfix code
- d) None of these.

GROUP - B

(Short Answer Type Questions)

Answer any three of the following.

 $3 \times 5 = 15$

- 2. Write the scope of information theory and basic set-up of information theory.
- 3. What is coding theory?
- 4. Write a short note on Channel capacity.

- 5. Does the Nyquist theorem bit rate agree with the intuitive bit rate described in baseband transmission?
- 6. Write the Shannon's Theorem with an example.
- 7. Explain the strategies for handling channel errors. Also explain the different types of Forward Error Correction (FEC) mechanisms.
- 8. Write the definition of Shannon's Entropy. Give an example of Shannon's noiseless coding theorem.
- 9. Write a note on Binary Symmetric Channel (BSC).

GROUP - C (Long Answer Type Questions)

Answer any *three* of the following. $3 \times 15 = 45$

- 10. What is information ? Briefly explain the properties of information.
- 11. What is the coding principle and purpose of error control coding? Explain the different types of coding and channels.
- 12. What is entropy? Write the basic properties of Von Neumann's entropy. Write the application of entropy with an example.
- 13. What is Data Compaction ? Explain the source coding schemes of data compaction.
- 14. What are mutual information and conditional mutual information? Explain the chain rules of mutual information. Write the applications of mutual information.
- 15. Define discrete Memoryless Channel. Give an example of Discrete Memoryless Channel. What is information Capacity Theorem? Write the implications of the Information Capacity Theorem.