|                           | Utech                                       |
|---------------------------|---------------------------------------------|
| Name:                     |                                             |
| Roll No.:                 | As Against 15' Exemple for Stall Experience |
| Invigilator's Signature : |                                             |

## CS/M.Sc.(IS)/SEM-1/MI-102/2012-13 2012

## DATA STRUCTURE WITH C/C++

Time Allotted: 3 Hours Full Marks: 70

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

# GROUP - A ( Multiple Choice Type Questions )

- 1. Choose the correct alternatives for the following :  $10 \times 1 = 10$ 
  - i) The Sparse matrix is a matrix whose
    - a) most of the elements are non-zero
    - b) most of the elements are zero
    - c) half of the elements are zero and half are non-zero
    - d) none of these.
  - ii) The prefix notation is also know as
    - a) Polish notation
    - b) Reverse Police notation
    - c) Reverse Polish notation
    - d) none of these.
  - iii) Complexity of binary search is
    - a) O(n)

- b)  $O(\log(n))$
- c)  $O(n \log n)$ .
- d) O(1).

41312 [Turn over

## CS/M.Sc.(IS)/SEM-1/MI-102/2012-13



a)  $2^k$ 

b) 2k

c)  $2^{k}-1$ 

d) none of these.

- v) In a BST
  - a) each node is greater than every node to its left subtree
  - b) each node is greater than every node to its right subtree
  - c) each node is less than every node to its left subtree
  - d) none of these.
- vi) f(n) is of the order of g(n) if there exist positive integer a and b such that
  - a)  $f(n) \le a * g(n)$  for all  $n \ge b$
  - b)  $f(n) \le a * g(n)$  for all  $n \le b$
  - c)  $g(n) \le a * f(n)$  for all  $n \ge b$
  - d) none of these.
- vii) To make a queue empty, elements can be deleted, till
  - a) front = rear + 1
- b) front = rear -1
- c) front = rear
- d) none of these.
- viii) In linked list representation a node contains at least
  - a) node address field
  - b) node number, data field
  - c) next address field, information field.
  - d) none of these.



- ix) Using DFS we can transverse a
  - a) tree

- b) graph
- c) both (a) and (b)
- d) none of these.
- x) The height difference of any node in an AVL tree is
  - a) 1, 0, 1
- b) 2, 0, 1
- c) -2, 0, 2
- d) 1, 0, 2.

#### GROUP - B

## (Short Answer Type Questions)

Answer any three of the following.

 $3 \times 5 = 15$ 

2. Convert the following expression into postfix and prefix:

$$a + b \times c - d - (e - f \times g) / h$$

 $2 \times 2\frac{1}{2}$ 

- 3. Write algorithm to add two polynomials.
- 4. What is hashing? Briefly explain different commonly used hash function.
- 5. Compare and contrast iteration with recursion.
- 6. Distinguish between DFS and BFS. Indicate their time complexity. 4 + 1

#### **GROUP - C**

### (Long Answer Type Questions)

Answer any *three* of the following.  $3 \times 15 = 45$ 

7. Write an algorithm to implement binary search tree. Also write the algorithm to delete an element from a binary search tree. construct an AVL tree with the following elements:

34, 67, 4, 56, 44, 55, 671, 345, 567, 2, 5, 89, 93, 23



9. What are the differences between stack and queue? Write down an algorithm for deletion operation in a circular single linked list.

Evaluate the postfix expression:

$$623 + -382 / + *2 - 3 +$$

Convert the following infix to postfix expression using

$$(A + (B * C - (D / E - F) * G) * H)$$
 2 + 3 + 5 + 5

10. Write short notes on any *three* of the following :  $3 \times 5$ 

4

- a) De-queue
- b) B + tree
- c) In-order pre-order and post-order traversal
- d) Insertion sort
- e) ADT.

41312