CS/B.Tech/TT/APM/ODD SEM/SEM-3/TT-301/2016-17

MAULANA ABUL KALAM AZAD UNIVERSITY OF TECHNOLOGY, WEST BENGAL

Paper Code: TT-301

INSTRUMENTATION AND CONTROL

Time Allotted: 3 Hours

Full Marks: 70

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

GROUP - A

(Multiple Choice Type Questions)

- 1. Choose the correct alternatives for any ten of the following: $10 \times 1 = 10$
 - i) One Torr is defined as
 - a) one mm Hg
- b) one inch Hg
- c) one atmosphere
- d) one kilo pascal.
- ii) Gauge pressure is
 - a) absolute pressure
 - 南 absolute pressure atmospheric pressure
 - c) atmospheric pressure
 - d) atmospheric pressure absolute pressure.

3/30109

| Turn over

CS/B.Tech/TT/APM/ODD HEM/HEM-3/TT-301/2016-17

iii)	Thermocoup	ole is	based	on
------	------------	--------	-------	----

- a) Seebeck effect
- b) Peltier effect
- c) Beer-Lambert law
- d) Thomson effect.
- iv) Which of the following is used in non-contact type temperature measurement?
 - a) Thermocouple
- (b) Radiation pyrometer

http://www.makaut.com

c) RTD

- d) Thermistor.
- v) Mason's gain formula is used to find
 - a) open loop transfer function
 - b) closed loop transfer function
 - c) both (a) & (b)
 - d) none of these.
- vi) A rise in ambient temperature and resultant rise in LVDT temperature results in
 - a) increase in primary impedance
 - b) reduction in primary current

both (a) & (b)

- d) none of these.
- vii) Lambert's law is expressed as T=
 - a) I/I_0

p) 4/1

 $c) = I * I_0$

d) $1^2 \cdot 100$.

CS/B.Tech/TT/APM/ODD NEM/和EM-3/TT-301/2016-17 viii) A transducer converts

- a) electrical energy to any other form of energy
- b) electrical energy to light energy
- (c) mechanical displacement into electrical signal
 - d) electrical energy to mechanical energy.
- ix) Which of the following is an example of an active transducer?
 - a) Potentiometer
- b) LVDT
- c) Thermocouple
- d) Encoder.
- x) If movable core of a LVDT is near secondary winding (S_2) , then which secondary winding (S_1) or (S_2) will undergoes less flux linkage, while no A.C. is connected to the primary winding (P)?

 s_1

b) S_2

c) P

- d) None of these.
- xi) Which of the following is used to measure humidity?
 - a) Hydrometer
- b) U-tube manometer
- c) Rotameter
- ンd) Hygrometer.

3/30109

http://www.makaut.com

3

| Turn over

CS/B.Tech/TT/APM/ODD SEM/SEM-3/TT-301/2016-17

- xii) Density applies to a substance in
 - a) solid state
- b) liquid state

- c) gns state
- d) all of these.

GROUP - B

(Short Answer Type Questions)

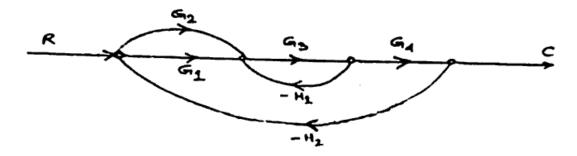
Answer any three of the following. $3 \times 5 = 15$

- 2. State the differences between open-loop and closed-loop control system. State the Laplace transform of e^{-at} , $\sin^{\omega t}$. What do you mean by pole and zero of a transfer function? 2 + 1 + 2
- What are the advantages of electrical transducer? What do you mean by active and passive transducers? Give examples.
- 4. Why non-contact type temperature measurement is needed? Explain a non-contact type temperature measurement technique with the help of proper schematic diagram.
- 5. Differentiate between PI and PID controller. Define Transfer function. 3+2

3/30109

http://www.makaut.com

CS/B.Tech/TT/APM/ODD SEM/SEM-3/TT-301/2016-17


6. With a neat sketch explain working principle of Gow-Mac densitometer. What is Triple point? 4 + 1

GROUP - C

(Long Answer Type Questions)

Answer any three of the following. $3 \times 15 = 45$

7. Using Mason's gain formula determine the ratio C/R for the system shown below:

For the transfer function $G(s) = \frac{(s^2 + 4)(1 + 2 \cdot 5s)}{(s^2 + 3)(1 + 0 \cdot 5s)}$.

Plot poles and zeros in s-plane and determine the value of transfer function at s = 2.

What do you mean by dead time? What do you mean by controller? 7+4+2+2

What is RTD and how is it used? Draw a bridge circuit for temperature measurement by RTD. Write down the working principle of LVDT with the help of a neat sketch. Explain with a neat sketch diagram, how capacitive pressure transducers works? 2+3+5+5

http://www.makaut.com

CS/B.Tech/TT/APM/ODD SEM/SEM-3/TT-301/2016-17

9. What do you mean by Gauge pressure, Absolute pressure, Vacuum or Differential pressure, Static and Velocity pressure? Explain with a neat sketch diagram how Magnetic drag cup or Eddy current tachometer works in case of torque measurement.

Prove that
$$\frac{C(s)}{R(s)} = \frac{G(s)}{1 + G(s) * H(s)}$$
. 5 + 5 + 5

- 10. a) Explain any type of thickness measurement technique with the help of necessary diagram.
 - b) The output of an LVDT is connected to a 5V voltmeter through an amplifier of amplification factor 250. The voltmeter scale has 100 divisions and the scale can be read to 1/5th of a division. An output of 2 mV appears across the terminals of the LVDT when the core is displaced through a distance of 0.5 mm. Calculate (i) sensitivity of the LVDT, (ii) that of whole set up and (iii) the resolution of the instrument in mm.

http://www.makaut.com

CS/B.Tech/TT/APM/ODD SEM/SEM-3/TT-301/2016-17

- 11. Write short notes on any three of the following: 3×5
 - a) Hygrometer
 - b) 7-Segment display
 - c) Optical pyrometer
 - PID controller
 - e) DAS
 Cathode Ray Tube.