HTTP://WWW.MAKAUT.COM

HTTP://WWW.MAK	ΔΙΙΤ	com

7	•	•			•					•	4	4	r 4		P					d		. 1	•	۰	-		 . ,	•	b	e.	+			b			Þ	•		•	ď	۰	• •	, +	4	٠		6 -	,	-	r
\$	•		•		•	•		•	,			, ,		,		 ,	ų	 *	,	- 1					٠.	. ,	ь					,	y		. ,	,			4	-		. ,		r	-	4 1		,			
ŀ	Ì	1		1	S	ì	S	Į	n	C	L	þ	u	ŗ	e		,	ė			,			4	٠	Ţ				Ţ	4			h				,									,			,	

C8/B.TECH(NEW)/SEM-2/ME-201/2013

2013

ENGINEERING THERMODYNAMICS & FLUID MECHANICS

iotted: 3 Hours Full Marks: 70

GROUP - A

(Multiple Choice Type Questions)

Choose the correct alternatives for any ten of the following:

 $10 \times 1 = 10$

- i) If heat engine attains 100% thermal efficiency, it violets
 - a) Zeroth law of thermodynamics
 - b) 1st law of thermodynamics
 - c) 2nd law of thermodynamics
 - d) none of these.
- The more effective way of increasing efficiency of a Carnot engine is to
 - a) increase higher temperature
 - b) decrease higher temperature
 - c) increase lower temperature
 - d) decrease lower temperature.

2123

| Turn over

- iii] Air standard efficiency of Otto Cycle depends on
 - a) ratio of specific heats b) cut-off ratio
 - c) compression ratio
- d) both (a) and (c).
- iv) The flow field represented by the velocity vector $V = ax a + by^2 j + czt^2k$, where a, b and c are constants is
 - a) three-dimensional and unsteady
 - b) two-dimensional and steady
 - c) three-dimensional and steady
 - d) two-dimensional and unsteady.
- v) Pitot tube is used to measure
 - a) dynamic viscosity
- b) kinematic viscosity
- c) mass density
- d) velocity of flow.
- vi) PMM-1 is impossible according to
 - a) 2nd law of thermodynamics
 - b) 3rd law of thermodynamics
 - c) 1st law of thermodynamics
 - d) zeroth law of thermodynamics.
- vii) During throttling, which of the following properties does not change?
 - a) Internal energy
- b) Entropy

c) Pressure

- d) Enthalpy.
- vin) Which fluid does not experience shear stress during flow?
 - a) Pseudo-plastic
- b) Dilatant

c) Inviscid

- d) Newtonian.
- ix) The differential equation of pressure variation in a static fluid may be written as { y measured vertically upward and γ is specific weight}
 - a) $dP = -\gamma dy$

- b) $\gamma dp = -dy$
- c) $y dy = -\rho dP$
- d) ydP = -ody

The standard atmospheric pressure is 101:32 kPa. The implicatmospheric pressure at a location was 91:52 kPa. If a pressure is recorded as 22:48 kPa (gauge), it is introduct to

- 123-80 kPa (abs)
- b) 88-84 kPa (abs)
- 114-00 kPa (abs)
- d) 69-04 kPa (abs).

an ideal gas, for which process can temperature of a system decrease even if heat is added to it?

al Isobaric

b) isothermal

c) laentropic

d) Polytropic

The area under a curve, representing a non-cyclic process on a temperature entropy (T-S) plane represents

- a) heat transfer for a reversible process
- b) work transfer for a reversible process
 - c) heat transfer for any process
- d) work transfer for any process.
- 2 xiii) Oil spreads on the surface of water because
 - a) oil is less dense than water
 - bl oil is immiscible in water
 - oil has less surface tension than water
- dl oil has low vapour pressure
 - mivi Spot the odd out.
 - a) Thermal conductivity b) Kinetic energy
 - c) Work

- d) Pressure.
- An engine is supplied with 1120 kJ/s of heat and the source and sink are maintained at constant fixe temperatures of 560 K and 280 K respectively. If her rejection is 840 kJ/s, indicate the given cycle is
 - a) reversible
 - b) irreversible
 - c) impossible
 - d) unpredictable, insufficient data.

GROUP - B

(Short Answer Type Questions)

Answer any three of the following $3 \times 5 =$

- 2. A 0-025 m³ vessel contains 0-3 kg of steam at 2 MF Determine the quality, enthalpy and entropy of steam. Givi $t_s = 212 \cdot 2^{\circ}\text{C}$, $v_f = 0.001177 \text{ m³/kg}$, $v_g = 0.0995 \text{ m³/k}$ $h_f = 908.5 \text{ kJ/kg}$, $h_{fg} = 1888.7 \text{ kJ/kg}$, $s_f = 2.447 \text{ kJ/kg}$. $s_{fg} = 3.590 \text{ kJ/kg-K}$.
- 3. 0-2 m³ of an ideal gas at a pressure of 2 MPa and 600 K expanded isothermally to 5 times the initial volume. It is the cooled to 300 K at constant volume and then compresse back polytropically to its initial state. Determine the net wor done and heat transfer during the cycle.
- 4. At the inlet to a certain nozzle the specific enthalpy of flui passing is 2800 kJ/kg. The nozzle is horizontal and there i negligible heat loss from it. (i) Find the velocity at exit of th nozzle, (ii) If the inlet area is 900 cm² and specific volume a inlet is 0.187 cm³/kg, find the mass flow rate, (iii) If the specific volume at the nozzle exit is 0.498 m³/kg, find the exit area of the nozzle.
- a) Derive an expression for displacement work in a process where PVⁿ = C.
 - b) A paddle wheel used for mixing and stirring of fluids turns 600 r.p.m. when 2.5 Nm torque is applied to it What is power transmitted to the liquid by the wheel?

2 + 3

 a) Establish the equivalence of Kelvin-Planck and Clausius statements.

HTTP://WWW.MAKAUT.COM

b) A heat engine produces work equivalent to 80 kW with an efficiency of 40%. Determine the heat drawn from the source and rejected to the sink.
2+3

GROUP - C

(Long Answer Type Questions)

Answer any three of the following. $3 \times 15 = 45$ Bernoulli's equation, stating the assumptions. 2

and dimensional flow is described in the Lagrangian

Thate system as

$$4x_0e^{-kt} + y_0(1 - e^{-kt})$$

$$4y_0e^{kt}$$

ad the equation of path line of the particle and the function components in Eulerian system.

A venturimeter has inlet and throat diameters of 300 mm and 150 mm. Water flows through it at the rate of 0-065 m²/s and the differential gauge is deflected. 1-2 m. The specific gravity of the manometric liquid in 1-6. Determine the coefficient of discharge of the venturimeter.

State and prove Pascal's law of pressure at a point of a fluid body.

The velocity vector for a two dimensional incompressible

Flow field is given by
$$V = \left(\frac{x}{x^2 + y^2}\right)i + \left(\frac{y}{x^2 + y^2}\right)j$$
. State,

A diffuser consists of two parallel plates 20 cm in diameter and 0.5 cm apart and connected to a 3 cm diameter pipe. If the streamlines are assumed to be radial in the diffuser, what mean velocity in the pipe will correspond to an exit velocity of 0.5 m/s?

- 9. a) What is pure substance?
 - b) What is the critical point? State the values of crit pressure and critical temperature of water?
 - c) Why is the Carnot cycle not practicable for a stepower plant?
 - d) At the inlet to a certain nozzle, the enthalpy of the f passing is 3000 kJ/kg and the velocity is 60 m/s. At discharge end, the enthalpy is 2762 kJ/kg. The no is horizontal and there is negligible heat loss from it.
 - i) Find the velocity at the exit from the nozzle.
 - ii) If the inlet area is 0.1 m² and the specific volu at inlet is 0.187 m³/kg, find the mass flow rate.
 - iii) If the specific volume at the nozzle exit 0:498 m³/kg, find the exit area of the nozzle.

2 + 2

- 10. a) In a steam turbine, steam at 20 bar, 360°C is expan to 0.08 bar. It then enters a condenser, where i condensed to saturated liquid water. The pump fe the water back into the boiler. Assume ideal procesfind, per kg of steam, the net work and the c efficiency.
 - b) An air standard Otto cycle has as compression r of 8, temperature and pressure at the beginning compression are 20°C and 1 bar respectively, constant volume heat addition is 1800 kJ/kg. Calcu the maximum temperature and pressure of the cycle respective pressure (m.e.p.) of cycle? C_i = 0.718 kJ/kg K and γ ≈ 1.4.
- 11. a) Two reversible heat engines are arranged in a scried such a way that the heat rejected by the first engine absorbed by the second engine. The first engine nece 400 kJ of heat from a reservoir maintained temperature 600°C, while the second engine rejects?

- to a reservoir having temperature 0°C. If the work cutput of the first engine is twice than that of the rescond, determine
- efficiency of both the engines
- heat rejected by the second engine
- in intermediate temperature.

7

Air at temperature of 15°C passes through a heat exchanger with a velocity of 30 m/s where its temperature is raised to 800°C. It then enters a turbine with same velocity of 30 m/s and expands until the temperature falls to 650°C. On leaving the turbine, air is taken at a velocity of 60 m/s to a nozzle where it expands until the temperature has fallen to 500°C. If the air flow rate is 2 kg/s, find out

- i) the rate of heat transfer to the air in the heat exchanger
- the power output from turbine, assuming no heat loss
- the velocity at exit from nozzle, assuming no heat loss.

Take, $C_p = 1.0005 \text{ kJ/kg K & } h \approx C_p.t + h = \text{enthalpy},$ t = temperature
