	Utech
Name :	
Roll No.:	To Spanie (1) Exemple for Stall Explored
Invigilator's Signature :	

CS/B.Tech (IT)/SUPPLE/SEM-7/IT-703A/2010 2010 COMPUTER GRAPHICS

Time Allotted: 3 Hours Full Marks: 70

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

GROUP - A

(Multiple Choice Type Questions)

- 1. Choose the correct alternatives for the following: $10 \times 1 = 10$
 - i) Bresenham's Algorithm seeks to select the optimum raster location that represents a
 - a) straight line
- b) polygon
- c) curve line
- d) none of these.

- ii) Tablet is
 - a) physical interactive device
 - b) logical interactive device
 - c) data generation device
 - d) none of these.
- iii) The slope of the Bezier curve at the start of the curve is controlled by
 - a) 1st control point
 - b) 1st two control points
 - c) 1st three control points
 - d) all four control points.

SE-53 [Turn over

B.Tec	ch (IT)/SUPPLE/SEM-7/IT-7	03A/	2010 Utech
iv)	coor	$(x, y, w), w \neq 0$, is a dinate system then ensional system is		nt in the homogeneous
	a)	(x, y, 1)	b)	(x, y, 0)
	c)	(x/w, y/w)	d)	(x, y, x-y).
v)	Clip	ping algorithms are		
	a)	two dimensional		
	b)	three dimensional		
	c)	two or three dimension	ıal	
	d)	none of these.		
vi)	The DDA algorithm is faster method for calculating pi positions than direct use of line equation us y = mx + c			
	a)	it eliminates floating p	oint a	addition
	b) it eliminates floating point multiplicationc) it eliminates rounding operation that drift from true line path			
	d)	none of these.		
vii)	Alias	sing means		
	a)	Rendering effect	b)	Shading effect
	c)	Staircase effect	d)	Cueing effect.
viii)	Z-buffer algorithm is used for			
	a)	frame buffer removal	b)	hidden line removal
	c)	rendering	d)	animation.
ix)	The	amount of memory in frame buffer is called		
	a)	bit plane	b)	plane
	c)	bit	d)	none of these.
x)	Under parallel projection the point (2 , 3 , -1) has been viewed at (3 , 3 , 0). Then the direction of the vector should be			

a) (1,1,0) b) (1,0,-1) c) (0, 1, 1) d) (0, -1, 1).

GROUP - B

(Short Answer Type Questions)

Answer any three of the following.

- $3 \times 5 = 15$
- 2. What are the differences between raster scan and vector scan techniques?
- 3. Define projection and mention its importance. Derive the transformation matrix for a perspective projection. 3 + 2
- 4. Distinguish between window and viewport. Describe window to viewport mapping. 2 + 3
- 5. Magnify the triangle with vertices A (0, 0), B (2, 2) and C (6, 8) to twice of it while keeping C (5, 2) fixed.
- 6. Use the Cohen-Sutherland algorithm to clip two lines P1 (40, 15) P2 (75, 45) and P3 (70, 20) P4 (100, 10) against a window A (50, 10), B (80, 10), C (80, 40) and D (50, 40).

GROUP - C

(Long Answer Type Questions)

Answer any three questions.

- $3 \times 15 = 45$
- 7. a) Explain Bresenham's line drawing algorithm. Discuss its advantages over DDA.
 - b) Find the pixel location approximating the first octant of a circle having centre (2, 3) and a radius 2 units using Bresenham circle algorithm. 7 + 2 + 6
- 8. a) Why is a homogeneous co-ordinate system needed in transformation matrix?
 - b) Derive transformation matrix for rotation about any axis.
 - c) What do you mean by shearing?
 - d) Explain the reflection of a 2D figure on y = mx + c. Derive its component matrix. 3 + 3 + 3 + 6

CS/B.Tech (IT)/SUPPLE/SEM-7/IT-703A/2010

- b) Suppose a window has its lowest left corner at (-2, -1) and its upper right corner at (3, 2). Using Cohen-Sutherland algorithm for the line clipping, find the visible portion of the line joining points (-3, 1) and (4, -1).
- 10. a) Explain the term "control points". Give details of how Bezier curves are generated. Write the pseudo-code for generating Bezier curve.
 - b) What are the advantages of using *B*-spline curve over Bezier curve? (2+5+4)+4
- 11. Write short notes on any *three* of the following: 5 + 5 + 5
 - a) DDA algorithm
 - b) Flood fill algorithm
 - c) Functionality of a refresh CRT
 - d) Colour Models
 - e) Z-buffer algorithm.

SE-53 4