

CS / B.TECH (CSE/IT) / SEM-4 / M-401/ 2011
2011
MATHEMATICS
Time Allotted: 3 Hours
Full Marks : 70

The figures in the margin indicate full marks.
Candidates are required to give their answers in their own words as far as practicable.

GROUP - A

(Multiple Choice Type Questions)

1. Choose the correct alternatives for any ten of the following :

$$
10 \times 1=10
$$

i) A group contains 12 elements. Then the possible number of elements in a subgroup is
a) 3
b) 5
c) 7
d) 11 .
ii) In a group $(G, 0)$ if $(a o b)^{-1}=a^{-1} o b^{-1}$, then

a) G is finite
b) $\quad G$ is infinite
c) G is abelian
d) none of these.
iii) The mapping $f: \mathbb{R} \rightarrow \mathbb{R}$ given by $f(x)=|x|, x \in \mathbb{R}$ is
a) injective
b) surjective
c) bijective
d) none of these.
iv) The relation $\{(a, b): a, b \in z, a b>0\}$ defined on z (the set of integers) is
a) symmetric
b) reflexive
c) anti-symmetric
d) equivalence.
v) The number of unit elements of the ring $(z,+, \cdot)$ is
a) 2
b) 3
c) 1
d) infinite.

CS / B.TECH (CSE/IT)/SEM-4 / M 40 Lhy 2011
vi) If $F: G \rightarrow G^{\prime}$ be a homomorphism and e isa positive
identity element of G then $f(e)$ is
a) identity element of G
b) identity element of G^{\prime}
c) inverse of each element of G^{\prime}
d) none of these.
vii) Number of operations required in a Boolean Algebra is
a) 1
b) 2
c) 3
d) 4 .
viii) The Boolean function $\left(x^{\prime} y^{\prime}+x y+x^{\prime} y\right)$ is equivalent to
a) $x^{\prime}+y^{\prime}$
b) $x+y$
c) $x^{\prime}+y$
d) none of these.
ix) The generating function of $\left(1,1, \frac{1}{2!}, \frac{1}{3!}, \frac{1}{4!}, \frac{1}{5!}, \ldots\right)$ is
a) $\quad-\log _{e}(1-x)$
b) $\quad \log _{e}(1+x)$
c) e^{x}
d) none of these.
x) The solution of the recurrence relation $S_{n}=2 S_{n-1}$ with $S_{0}-1$ is $S_{n}=$
a) 2^{n}
b) 2^{n-1}
c) $\quad 2^{n+1}$
d) none of these.
xi) The maximum number of edges in a simple connected graph with n vertices is
a) $2 \cdot{ }^{n} C_{2}$
b) ${ }^{n} C_{2}$
c) $(n-1)$
d) none of these.
xii) A complete graph is
a) regular
b) connected
c) simple
d) circuit.

Answer any three of the following.

$$
3 \times 5=15
$$

2. If $f: G \rightarrow G^{\prime}$ be a group homomorphism from a group G to the Group G^{\prime}, then show that kerf is a normal subgroup of G.
3. If in a ring R with unity, $(x y)^{2}=x^{2} y^{2}$, for all $x, y \in R$ then show that R is commutative.
4. Using generating function, find the integral solutions of $x_{1}+x_{2}+x_{3}+x_{4}+x_{5}=10$, whenever, $1 \leq x_{i} \leq 5 ; i=1,2, \ldots, 5$.
5. Define isomorphism of graph. Show that the graphs G and G^{\prime} are isomorphic.

6. Show that the number of pendent vertices in a binary tree is $(n+1) / 2$, where n is the number of vertices in the tree.

Answer any three of the following.
$3 \times 15=45$
7. a) Prove that the relation ρ defined on z by $a \rho b$ iff $a^{2} \equiv b^{2}(\bmod 5), a, b \in z$ is an equivalence relation and also find all equivalence classes.
b) Define normal subgroup of a group. If G is a group and H is a subgroup of index 2 in G, prove that H is a normal subgroup of G.
c) Let G be a group. If $a, b \in G$ such that $a^{4}=e$, the identity element of G and $a b=b a^{2}$, prove that $a=e$.

$$
5+5+5
$$

8. a) If two operations * and 0 on the set Z of integers are defined as follows : $a * b=a+b-1$, $a \circ b=a+b-a b$, prove that $(Z, *, o)$ is commutative ring with unit element.
b) Construct a simple logic circuit for each of the Boolean functions :
i) $x y^{\prime}+x^{\prime} y z+x^{\prime} y^{\prime} z$
ii) $(y x+x z) z^{\prime}$.
c) Using generating function, solve the recurrence relation $a_{n}-7 a_{n-1}+10 a_{n-2}=0$ for $a>1$ and $a_{0}=3, a_{1}=3$.

$$
5+5+5
$$

9．a）Prove that the intersection of two subrings is a subring．
b）Find the disjunctive normal form（sum of product）for the Boolean expression $(x+y+z) \cdot\left(x y+x^{\prime} z\right)^{\prime}$ ．
c）Prove that every cut set in a connected graph contains at least one branch of every spanning tree of the graph．

$$
5+5+5
$$

10．a）Construct the Adjacency matrix of the following di－graph ：

b）Prove that a tree with n number of vertices has $(n-1)$ number of edges．
c）Find by Kruskal＇s Algorithm a minimal spanning tree for the following graph ：

$$
5+5+5
$$

