Name :	
Roll No. :	(A Alama Wanning and Explored
Invigilator's Signature :	

CS / B.TECH (CSE/IT) / SEM-4 / M-401/ 2011

2011

MATHEMATICS

Time Allotted : 3 Hours

Full Marks: 70

The figures in the margin indicate full marks. Candidates are required to give their answers in their own words as far as practicable.

GROUP – A

(Multiple Choice Type Questions)

1. Choose the correct alternatives for any *ten* of the following :

 $10 \times 1 = 10$

i) A group contains 12 elements. Then the possible

number of elements in a subgroup is

- a) 3 b) 5
- c) 7 d) 11.

[Turn over

- a) identity element of G
- b) identity element of G'
- c) inverse of each element of *G* '
- d) none of these.

vii) Number of operations required in a Boolean Algebra is

- a) 1 b) 2
- c) 3 d) 4.
- viii) The Boolean function (x'y' + xy + x'y) is equivalent to
 - a) x' + y' b) x + y
 - c) x' + y d) none of these.
- 4101

[Turn over

- c) 2^{n+1} d) none of these.
- xi) The maximum number of edges in a simple connected graph with *n* vertices is
 - a) $2 \cdot {}^{n}C_{2}$ b) ${}^{n}C_{2}$
 - c) (n-1) d) none of these.
- xii) A complete graph is
 - a) regular b) connected
 - c) simple d) circuit.
- 4101

Answer any *three* of the following. $3 \times 5 = 15$

- 2. If $f: G \to G'$ be a group homomorphism from a group G to the Group G', then show that *kerf* is a normal subgroup of G.
- 3. If in a ring R with unity, $(xy)^2 = x^2y^2$, for all $x, y \in R$ then show that R is commutative.
- 4. Using generating function, find the integral solutions of $x_1 + x_2 + x_3 + x_4 + x_5 = 10$, whenever, $1 \le x_i \le 5$; i = 1, 2, ..., 5.
- 5. Define isomorphism of graph. Show that the graphs *G* and *G* ' are isomorphic.

- Show that the number of pendent vertices in a binary tree is
 (n+1) / 2, where n is the number of vertices in the tree.
- 4101 5 [Turn over

CS / B.TECH (CSE/IT) / SEM-4 / M-401/ 2011

Utech

 $3 \times 15 = 45$

(Long Answer Type Questions)

GROUP - C

Answer any *three* of the following.

- 7. a) Prove that the relation ρ defined on z by $a \rho b$ iff $a^2 \equiv b^2 \pmod{5}, a, b \in z$ is an equivalence relation and also find all equivalence classes.
 - b) Define normal subgroup of a group. If G is a group and H is a subgroup of index 2 in G, prove that H is a normal subgroup of G.

c) Let *G* be a group. If *a*, $b \in G$ such that $a^4 = e$, the identity element of *G* and $ab = ba^2$, prove that a = e. 5 + 5 + 5

- 8. a) If two operations * and 0 on the set Z of integers are defined as follows : a * b = a + b 1, a o b = a + b ab, prove that (Z, *, o) is commutative ring with unit element.
 - b) Construct a simple logic circuit for each of the Boolean functions :
 - i) xy' + x'yz + x'y'z
 - ii) (yx + xz)z'.
 - c) Using generating function, solve the recurrence relation $a_n - 7a_{n-1} + 10a_{n-2} = 0$ for a > 1 and $a_0 = 3$, $a_1 = 3$.

5 + 5 + 5

4101

9. a) Prove that the intersection of two subrings is a subring.

- b) Find the disjunctive normal form (sum of product) for the Boolean expression $(x + y + z) \cdot (xy + x'z)'$.
- c) Prove that every cut set in a connected graph contains at least one branch of every spanning tree of the graph.

5 + 5 + 5

10. a) Construct the Adjacency matrix of the following di-graph :

- b) Prove that a tree with n number of vertices has (n −1) number of edges.
- c) Find by Kruskal's Algorithm a minimal spanning tree for the following graph :

4101

[Turn over