

Time Allotted : 3 Hours
Full Marks : 70

The figures in the margin indicate full marks.
Candidates are required to give their answers in their own words as far as practicable.

GROUP - A

(Multiple Choice Type Questions)

1. Choose the correct alternatives for any ten of the following : $10 \times 1=10$
i) The A matrix in the state-space model of the differential equation :
$\frac{\mathrm{d}^{3} y(t)}{\mathrm{d} t^{3}}+2 \frac{\mathrm{~d} y(t)}{\mathrm{d} t}+3 y(t)=u(t)$, is given by
a) $\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & 1 & 0 \\ -3 & -2 & 0\end{array}\right]$
b) $\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 3 & 2 & 0\end{array}\right]$
c) $\left[\begin{array}{ccc}0 & 1 & 0 \\ 0 & 0 & 1 \\ -3 & -2 & 0\end{array}\right]$
d) $\left[\begin{array}{lll}0 & 0 & 3 \\ 1 & 0 & 2 \\ 0 & 1 & 0\end{array}\right]$
ii) The solution to the linear time invariant state equation
$\dot{X}(t)=A X(t)+B u(t), X\left(t_{0}\right)=X_{0}$ is
a) $X(t)=e^{A t} X\left(t_{0}\right)+\int_{0}^{t} e^{A(t-\tau)} B u(\tau) d \tau$
b) $\quad X(t)=e^{A\left(t-t_{0}\right)} X\left(t_{0}\right)+\int_{t_{0}}^{t} e^{A(t-\tau))} B u(\tau) d \tau$
c) $X(t)=e^{A\left(t-t_{0}\right)} X\left(t_{0}\right)+\int_{0}^{t} e^{A(t-\tau)} B u(\tau) d \tau$
d) $X(t)=e^{A t_{0}} X\left(t_{0}\right)+\int_{t_{0}}^{t} e^{A\left(t_{0}-\tau\right)} B u(\tau) d \tau$
iii) A state space model can be converted to its diagonal canonical form if
a) eigenvalues of A matrix are real
b) eigenvalues of A matrix are in the left half of S-plane.
c) eigenvalues of A matrix are positive
d) eigenvalues of A matrix are distinct.
iv) The state transition matrix of the discrete time state equation :
$X(K+1)=F X(K)+G u(K)$ is
a) $e^{F K}$
b) F
c) $G[Z I-F]^{-1}$
d) $\quad F^{K}$
v) A state space realisation is stabilisable if
a) eienvalues of A are stable
b) unstable eigenvalues of A are real
c) unstable eigenvalues of A are controllable
d) stable eigenvalues of A are controllable.

CS/B.TECH(ICE)/SEM-5/LC-504/2011-12

 UTesvi) A pre-requisite for the design of LSVF controllers is that the state-space model should be

armonnin D

a) controllable
b) stabilizable
c) observable
d) detectable.
vii) The dimension of a full-order observer is
a) twice that of the plant
b) same as that of the plant
c) does not depend on the plant order
d) cannot be obtained.
viii) The phase trajectory of a linear second order system with complex conjugate poles on the $\mathrm{R}-\mathrm{H}$ of S-plane is
a) unstable focus
b) stable focus
c) unstable node
d) stable node.
ix) A common nonlinearity occurring in a gear train is
a) saturation
b) hysteresis
c) backlash
d) dead zone.
x) In the describing function analysis of nonlinear elements only
a) the state gain of the nonlinearity is taken
b) the fundamental component of the output is taken
c) the fundamental and third harmonics of the output are taken
d) none of these are true.
xi) A positive semi-definite matrix has
a) positive or zero eigenvalues

b) positive eigenvalues
c) negative or zero eigenvalues
d) negative eigenvalues.
xii) Under a similarity transformation eigenvectors
a) are multiplied by the transformation matrix
b) are multiplied by the inverse of the transformation matrix
c) cannot be evaluated
d) remain unchanged.
xiii) Lyapunov stability is valid for
a) autonomous systems
b) non-automous systems
c) forced systems
d) stable systems.

GROUP - B

(Short Answer Type Questions)

Answer any three of the following. $3 \times 5=15$
2. a) What are "states" in a dynamic system ? 2
b) Define the state transition matrix of a state space realization :
$X(t)=A X(t) ; \quad X\left(t_{0}\right)=X_{0}$
c) Show that for a state transition matrix
$\phi\left(t, t_{0}\right)$, the following property holds : $\phi(t, t)=I$1
3. a) Define eigenvectors of a matrix A.
b) Obtain eigenvectors of $A=\left[\begin{array}{cc}-1 & 0 \\ 1 & 2\end{array}\right]$

4. Obtain the state variable model of the system whose transfer function is given by
$G(s)=\frac{\left(s^{2}+3 s+1\right)}{\left(s^{3}+5 s^{2}+7 s+2\right)}$
5. Draw the state diagram of the following state equations :

$$
\begin{aligned}
& \dot{X}(t)=\left[\begin{array}{rrr}
-1 & 2 & 1 \\
1 & -4 & -3 \\
-1 & 8 & 9
\end{array}\right] \quad X(t)+\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right] u(t) \\
& Y(t)=\left[\begin{array}{lll}
1 & 1 & 0
\end{array}\right] X(t)
\end{aligned}
$$

6. What are limit cycles ? When are they stable ? Draw \& explain using diagrams.

GROUP - C

(Long Answer Type Questions)

Answer any three of the following. $3 \times 15=45$
7. a) For the system given below :
$\dot{X}(t)=\left[\begin{array}{ll}0 & 1 \\ 2 & 1\end{array}\right] X(t)+\left[\begin{array}{l}0 \\ 1\end{array}\right] u(t) ; \quad x(0)=\left[\begin{array}{l}0 \\ 0\end{array}\right], \quad$ obtain the time
response for a unit step input applied at $t=0.10$
b) Check whether the system is BIBO stable and / or zero input stable.

5
8. a) For the system in 7 (a) design a linear state variable feedback controller to yield a step response of the closed loop system with 16.2% overshoot and settling time $0 \cdot 8 \mathrm{sec}$.
b) What are the pre-requisites that the system should falfil for the design of an LSVF controller ? \qquad
c) Write the equations of an asymptotic full-order observer. Explain how and under what conditions does the estimation error go to zero.
9. a) Convert the system in 7(a) to its diagonal canonical form, if possible. What condition should the system fulfil?

The system below is preceded by a sample and a zero-order-hold (ZOH) as in Figure given . Obtain a discrete time state space model (as given in fig. above) from $u(k)$ to $y(k)$ taking $T=1 \mathrm{sec}$.
$\dot{X}(t)=\left[\begin{array}{cc}1 & 0 \\ 3 & -2\end{array}\right] X(t)+\left[\begin{array}{l}1 \\ 1\end{array}\right] u(t)$
$Y(t)=\left[\begin{array}{ll}1 & 0\end{array}\right] X(t)$
10. a) Draw the phase-portrait for the following linearesystem in figure below assuming the infial condition : $y(0)=-1, \dot{y}(0)=1$ and using isocline method.

b) Comment on the nature of the phase trajectory and the equilibrium point.
11. a) Derive the describing function of a relay with saturation non-linearity.
b) A linear system is described by :
$\dot{X}(t)=\left[\begin{array}{cc}0 & 1 \\ 2 & -1\end{array}\right] X(t)$
Investigate the stability of the system by using Lyapunov's method.

