

CS/ B.TECH (EEE/ ICE) (OLD)/ SEM-4/ EC-401/ 2012

 2012
ANALOG ELECTRONIC CIRCUITS

Time Allotted : 3 Hours
Full Marks : 70

The figures in the margin indicate full marks.
Candidates are required to give their answers in their own words as far as practicable.

GROUP - A
 (Multiple Choice Type Questions)

1. Choose the correct alternatives for the following :

$$
10 \times 1=10
$$

i) Damping factor of second order Butterworth filter is
a) 1.73
b) $\quad 1.414$
c) 1.06
d) 0.5 .
ii) The input offset voltage in an Op-Amp is due to
a) mismatch in transistor parameters
b) voltage irregularity
c) imperfect ground
d) none of these.

CS/B.TECH (EEE/ICE) (OLD)/SEM-4/EC-401/2012
iii) If gain is A and feedback factor is β, then condition to sustain oscillation of Wein-bridge oscillator is
a) $\quad A=1 / 3, \beta=3$
b) $\quad A=3, \quad \beta=1 / 3$
c) $\quad A=6, \quad \beta=1 / 6$
d) $\quad A=1 / 6, \beta=6$.
iv) The current in FET is
a) only due to minority carriers
b) only due to majority carriers
c) due to both
d) none of these.
v) Commercially available Op-Amp is
a) IC 742
b) IC 723
c) IC 741
d) IC 555 .
vi) The temperature coefficient of the Zener breakdown voltage is
a) positive
b) negative
c) zero
d) none of these.

b) zero
c) much smaller than unity
d) unity.
viii) A BJT can act as a switch, when it changes from
a) cut-off to active region
b) active to saturation
c) forward active mode to reverse active mode
d) saturation to cut-off region.
ix) For an enhancement mode n-MOSFET, the threshold voltage is
a) positive
b) negative
c) zero
d) none of these.
x) Maximum efficiency of class B push-pull power amplifier is
a) 25%
b) 65%
c) 78.5%
d) 95%.

CS/B.TECH (EEE/ICE) (OLD)/SEM-4/EC-401/2012

$3 \times 5=15$
2. Draw a circuit of a class B push-pull power amplifier. Derive its maximum power efficiency and collector dissipation. $2+3$
3. a) Obtain the expression for output voltage of an integrator using Op-Amp.
b) Draw the output waveforms if input of a differentiator is
i) Triangular wave
ii) Sine wave.
4. Show that depletion width (W) of a $p-n$ junction diode is related to applied potential V in the following way : $W \propto K \sqrt{V_{0}-V}$ where, K is a constant and V_{0} is the contact potential.
5. What are the differences between series and shunt regulators? Draw a circuit of a shunt regulator and explain its operation.

$$
2+3
$$

6. What do you mean by clamping cicuit ? Draw its circuit diagram and discuss its operation.

7. a) Sketch the basic structure of an n-channel enhancement type MOSFET and explain the various parts of it.
b) How does the name enhancement and depletion type MOSFET comes into picture ?
c) Show the circuit symbol for both enhancement and depletion type n-channel MOSFET.
d) Draw the $i_{D}-V_{D S}$ characteristic curve for common source configuration and indicate all the three regions of operation.

$$
4+6+2+3
$$

8. a) What are the characteristics of Ideal Op-Amp ? Establish the relationship between slew rate and full power bandwidth.
b) Design a circuit to implement the function $f=3 x+\log$ $(2 x)+\sin 4 x$.
c) Why hyteresis is desirable in a Schmitt Trigger Circuit?
d) Why multipliers are used for opeation of TV picture tube voltage rather than transformers?

$$
3+4+4+2+2
$$

CS/B.TECH (EEE/ICE) (OLD)/SEM-4/EC-401/2012
9. a) Draw the Eber's Moll model of the pnp-transistor and give the equations for the emitter current and collector current. 5
b) Define and describe about LED. 5
c) Draw the small-signal high-frequency $C E$ model of a transistor. How does g_{m} vary with | I_{C} ।, | $V_{C E}$ | and | T । ?
10. Write short notes on any three of the following : 3×5
a) Wien Bridge Oscillator
b) Four basic feedback topolgies
c) Astable multivibrator
d) Spice model of MOSFET
e) Active Filter.
CS/B.TECH (EEE/ICE) (OLD)/SEM-4/EC-407/2012
11. a) What do you mean by feedback in amplifiers? 2 CN:
b) Derive an expression for the closed-loop gain of the amplifier with feedback.6
c) State the assumptions made in your derivation. 3
d) Write down the effect of negative feedback in an amplifier in terms of gain, bandwidth, input resistance and output resistance with respect to voltage series configuration.

