	<u>Unedh</u>
Name :	(4)
Roll No.:	An Alasman Of Commission 2 and Excellent
Inviailator's Sianature:	

CS/B.Tech/FT/SEM-7/FT-703A/2012-13

2012 ENZYME TECHNOLOGY

Time Allotted: 3 Hours Full Marks: 70

The figures in the margin indicate full marks.

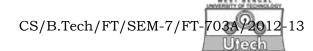
Candidates are required to give their answers in their own words as far as practicable.

GROUP - A

(Multiple Choice Type Questions)

1. Choose the correct alternatives for any *ten* of the following:

 $10 \times 1 = 10$


- i) In a continuous bioreactor μ_g = D when k_d (cell death rate) is
 - a) less than zero
- b) zero
- c) greater than zero
- d) infinite.
- ii) In r DNA technology which of the following enzymes is/are required?
 - a) Endonuclease
 - b) Ligase
 - c) Alkaline phosphatase
 - d) all of these.

7220 [Turn over

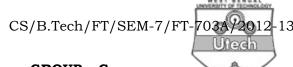
CS/B.Tech/FT/SEM-7/FT-703A/2012-13

- iii) Vector used in r DNA technology is
 - a) Plasmid
- b) Cosmid
- c) both of these
- d) none of these.
- iv) Method of immobilization is
 - a) ionic/chemical bonding
 - b) entrapment
 - c) cross linking
 - d) all of these.
- v) In enzymatic cell disruption the enzyme used is
 - a) Amylase
- b) Invertase
- c) Lysozyme
- d) all of these.
- vi) Which of the following relations between Km and [S] is correct?
 - a) $\text{Km} \infty [S]$
- b) $\text{Km} \infty [S]^{-1}$
- c) $\text{Km} \propto [S]^2$
- d) $\text{Km} \propto [S]^{-2}$
- vii) Enzymes are
 - a) Growth associated product
 - b) Non-growth associated product
 - c) Mixed growth associated product
 - d) None of these.
- viii) Micro-organisms follow
 - a) Zero order
 - b) First order
 - c) Second order
 - d) Third order growth kinetics.

- ix) If the doubling time for a micro-organism is 20 min then the value of $\mu_{\ net}$ is
 - a) 0.7 hr^{-1}
- b) 1.4 hr⁻¹
- c) 2.1 hr^{-1}
- d) 2.8 hr^{-1} .
- x) Luedeking Piret equation is applied to
 - a) Enzyme production
 - b) Acetic acid fermentation
 - c) Ethanol fermentation
 - d) Lactic acid fermentation.
- xi) In the eqation 1/X (dP/dt) = $\alpha \mu_g + \beta$, 1/X(dp/dt) stands for
 - a) maximum growth rate
 - b) yield coefficient for the fermentation
 - c) specific growth rate
 - d) specific product formation rate.
- xii) Metal ion is usually designated as the enzyme
 - a) coenzyme
- b) cofactor
- c) apoenzyme
- d) none of these.
- xiii) Which enzyme shows highest turnover number?
 - a) Catalase
- b) Peroxidase
- c) Carbonic anhydrase
- d) Dehydrogenase.

CS/B.Tech/FT/SEM-7/FT-703A/2012-13

- xiv) Heavy metals are
 - a) Competitive
 - b) Non-competitive
 - c) Uncompetitive
 - d) Irreversible type of inhibitor.
- xv) Organic solvent makes protein precipitation by
 - a) increasing dielectric constant of solution
 - b) decreasing dielectric constant of solution
 - c) increasing ionic strength of solution
 - d) decreasing ionic strength of solution.


GROUP - B

(Short Answer Type Questions)

Answer any *three* of the following. $3 \times 5 = 15$

- 2. What is enzyme immobilization ? What are the methods of immobilization ? 2 + 3
- 3. What is growth associated, non-growth associated and mixed growth associated product formation model? Enzyme belongs to which category? 4 + 1
- 4. What are the advantages of continuous reactor over batch reactor?
- 5. What are the advantages of using microbial source for enzyme production compared to animal and plant source?
- 6. Temperature has two-fold effect on enzyme activity Explain.

7220 4

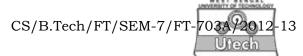
GROUP - C

(Long Answer Type Questions)

Answer any *three* of the following. $3 \times 15 = 45$

- 7. a) Compare enzyme with inorganic catalyst. What is Q_{10} value? 3+1
 - b) Derive the final expression of an enzyme fermentation system when oxygen transfer rate (OTR) equals to oxygen uptake rate (OUR).
 - c) A strain of mold was grown in a batch culture on glucose and the following data were obtained:

Time (h)	Cell concentration (g/l)	Glucose concentration (g/l)
0	1.25	100
9	2.45	97
16	5.1	90.4
23	10.5	76.9
30	22	48.1
34	33	20.6
36	37.5	9.38
40	41	0.63


- i) Calculate the maximum net specific growth rate
- ii) Calculate the apparent growth yield
- iii) What maximum cell concentration could one expect if 150g of glucose were used with the same size of inoculum?

8. a) What is substrate inhibition ? Prove that during substrate inhibition at high substrate concentration $v = Vm / [1 + \{ [S] / Ks_1 \}]$ where $v, Vm, [S], Ks_1$ have their usual meanings. Prove that at low substrate concentration it follows Michaelis-Menten equation.

1 + 5 + 4

- b) What will be the expression of substrate concentration (S_{max}) at which the reaction rate is maximum? 5
- 9. How enzymatic reactions are dependent on pH and temperature? How volumetric oxygen transfer coefficient $K_L a$ can be determined by Glucose oxidase method? What are the drawbacks of this method? (3 + 3) + 6 + 3
- 10. Why enzymes are purified ? "Enzymes must be purified before immobilization." Justify. Explain the principle of Chemostat and Turbidostat. 2 + 5 + 4 + 4
- 11. a) What is Chimeric DNA? Explain the general method of r DNA technology. 2 + 5
 - b) What is the role of vector in r DNA technology? Give one example each for natural and artificial vectors. Give five examples for application of r DNA technology. 2 + 1 + 5
- 12. How will you commercially produce α -amylase, mentioning strains, media composition, control parameters, and recovery process ? Between surface culture method and submerged fermentation which is favoured for α -amylase production and why ? 10 + 5

7220

- 13. a) Briefly describe the solid state fermentation process.
 - b) Write short note on dynamic method for determination of $K_L a$.
 - c) Prove that in a CSTR dilution rate is equal to specific growth rate under steady state condition. What do you mean by productivity? 5 + 5 + 5

7220 7 [Turn over