|                           | Utech                                |
|---------------------------|--------------------------------------|
| Name:                     |                                      |
| Roll No.:                 | The Agency (y Executing and Explana) |
| Invigilator's Signature : |                                      |

# CS/B.TECH (FT)/SEM-5/CHE-514/2010-11 2010-11

## UNIT OPERATION OF CHEMICAL ENGINEERING-II

Time Allotted: 3 Hours Full Marks: 70

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

# GROUP – A ( Multiple Choice Type Questions )

1. Choose the correct alternatives for the following:

 $10 \propto 1 = 10$ 

- i) Boiling point diagram is
  - a) not effected by pressure
  - b) affected by pressure
  - c) a plot of temperature vs liquid composition
  - d) a plot of temperature *vs* vapour composition.
- ii) Raoult's law is applicable to
  - a) ideals solutions
  - b) real solutions
  - c) the mixture of water and alcohol
  - d) non-ideal gases.

5318 [ Turn over

#### CS/B.TECH (FT)/SEM-5/CHE-514/2010-11



- iii) Henry's law states that the
  - a) partial pressure of a component over a solution is proportional to its mole fraction in the liquid
  - b) partial pressure of a component over a solution is proportional to its mole fraction in the vapour
  - c) vapor pressure is equal to the product of the mole fraction and total pressure
  - d) partial pressure is equal to the product of the mole fraction and total pressure.
- iv) In azeotropic mixture, the equilibrium vapor composition is
  - a) more than liquid composition
  - b) less than liquid composition
  - c) same as liquid composition
  - d) independent of pressure.
- v) Boudary Layer theory relates average mass transfer coefficient ( K ) with diffusivity ( D ) as
  - a)  $K \propto D^{0.5}$
- b)  $K \propto D^{2/3}$

c)  $K \infty D$ 

- d)  $K \propto D^3$ .
- vi) Relative volatility AB stands for
  - a)  $(X_A / Y_A) / (Y_B / X_B)$
  - b)  $(Y_A / X_A) / (Y_B / X_B)$
  - c)  $P_A^{sat} / P_B^{sat}$
  - d) both (b) and (c).



- vii) At total reflux condition in a distillation column, the number of plates becomes
  - a) minimum
  - b) infinite
  - c) more than that predicted by McCabe-Thiele method
  - d) less than that predicted by McCabe-Thiele method.
- viii) A vapor liquid mixture containing 75% liquid is used as feed for distillation. The value of q is
  - a) 3/4

b) 1/4

c) 1/2

d) 1.

- ix) Leaching is
  - a) Gas-liquid mass transfer
  - b) Gas-solid mass transfer
  - c) Liquid-liquid mass transfer
  - d) Solid-liquid mass transfer.
- x) For the case of Cracking reaction

CH  $_4$  Ø C + 2H  $_2$  , CH  $_4$  (A) diffuses to the cracking surface and H  $_2$  diffuses back. If the fluxes are NA and NB respectively then NA/NA + NB equals to

a) 0

b) 1

c) -1

d) 1/2.

#### **GROUP - B**

# (Short Answer Type Questions)

Answer any three of the following.



- 2. Derive the expression for overall mass transfer coefficient when the system is liquid film controlling.
- 3. Explain briefly the operating principle of a Packed Tower.
- 4. Define diffusivity. CH  $_4$  diffuses at steady state through a tube containing He. At point 1 the partial pressure of CH  $_4$  is  $p_A$  = 55 kPa and at point 2, 0.03 m apart  $p_A$  = 15 kPa.

The total pressure is  $101\cdot32$  kPa and temperature 298 K. At this temperature and pressure the value of diffusivity is  $6\cdot75 \propto 10^{-5}$  m<sup>2</sup>/S.

Calculate the flux of  $CH_4$  at steady state for equimolar counter diffusion. 2+3

- 5. The temperature of air in a room is  $40\cdot2^{\circ}\text{C}$  and the total pressure is  $101\cdot3$  kPa. The air contains water vapour with a partial pressure pA is  $3\cdot74$  kPa. Calculate (i) the humidity, (ii) the saturation humidity and % humidity, (iii) the % relative humidity. 1+2+2
- 6. A hot solution containing 5000 kg of Na $_2$  CO $_3$  and water with a concentration of 25 wt % Na $_2$  CO $_3$  is cooled at 293 K and crystals of Na $_2$  CO $_3$ . 10 H $_2$  O are precipitated. At 293 K, the solubility is 21·5 kg anhydrous Na $_2$  CO $_3$  /100 kg of total water. Calculate the yield of crystals obtained if 5% of the original water in the system evaporates on cooling.5

5318 4



### **GROUP - C**

## (Long Answer Type Questions)

Answer any three of the following.

 $3 \propto 15 = 45$ 

- 7. a) What is murphree plate efficiency of a distillation column?
  - b) Define NTU and H.T.U. of a distillation column.
  - c) A liquid feed at its boiling point of 400 kg-mol/h containing 70 mol % of benzene ( *A* ), 30 mol % of toluene ( *B* ) and fed to a stripping tower at 101·3 kPa pressure. The bottom product flow is to be 60 kg-mol/h contianing only 10 mol % of *A* and rest *B*. Calculate the kg-mol/h of overhead product, its composition and number of theoretical trays required. The equilibrium data of benzene toluene system is given below:

| <i>X</i> : | 1.000 | 0.700 | 0.581 | 0.411 | 0.258 | 0.130 | 0 |
|------------|-------|-------|-------|-------|-------|-------|---|
| <i>Y:</i>  | 1.000 | 0.900 | 0.777 | 0.632 | 0.456 | 0.261 | 0 |

2 + 3 + 10

- 8. a) What is the basic principle of extraction of solid ?

  Extraction of solids is sometimes pH dependent.

  Explain.
  - b) What is separation factor in an extraction process?

    Deduce an expression for kinetics of mass transfer during extraction process.

- c) Penicillin is extracted from a fermentation both using isoamylacetate as organic solvent in a continuous counter current cascade extraction unit. The flow rates of organic (l) and aqueous (h) phases are  $L=10\ 1/m$  and  $H=100\ 1/m$  respectively. The distribution coefficient of penicillin between organic and aqueous phases at pH = 3 is 50. If the penicillin concentration in the feed stream is 20 g/l, determine the number of stages required to reduce the penicillin concentration  $0.1\ g/l$  in the effluent of extraction unit. 4+5+6
- 9. a) A packed tower is to be designed to absorb SO $_2$  from air by scrubbing with water. The entering gas is 20% SO $_2$  by volume and leaving gas is to contain 0.5% SO $_2$  by volume. The entering water SO $_2$  free. The water flow is to be twice the minimum. The pure air (on SO $_2$  free basis) flow rate is 975 kg/hr.m $^2$  at 303 K and 2 atm pressure. The equilibrium data is governed by  $y = 21.8 \, x$ , x & y are in mole fraction units. Compute the number of gas transfer units.
  - b) Briefly discuss about the different types of plate type towers for absorption process.
- 10. a) Derive the relation between overall and individual mass transfer coefficient.
  - b) A mixture of acetone vapour & air containing 5% by volume of acetone is to be free of its acetone content by scrubbing it with water in a packed bed absorber. The flow rate of the gas is 700 m<sup>3</sup>/h of acetone-free air measured at NTP and that of water is 1500 kg/h. The

5318 6



absorber operates at an average temperature of 20C and a pressure of 101 kPa. the scrubber absorbs 98% of the acetone. The equilibrium relationship for acetone-vapour water system is  $Y^* = 1.68 X$ , where

Y-kmol of acetone/K mol of dry air & X-kmol of acetone/Kmol of dry water. Calcutate the mean driving force for absorption & the mass transfer area if the overall mass transfer coefficient is 0.4 K mol of acetone/m $^2$ h. 7+8

11. Describe any three unit operations :

 $3 \propto 5 = 15$ 

- a) Ultrafiltration
- b) Electrodialysis
- c) Pervaporation
- d) Reserve osmosis
- e) Dialysis.

5318 7 [ Turn over