

Time Allotted : 3 Hours
Full Marks : 70

The figures in the margin indicate full marks.
Candidates are required to give their answers in their own words as far as practicable.

GROUP - A
 (Multiple Choice Type Questions)

1. Choose the correct alternatives for the following :

$$
10 \infty 1=10
$$

i) Boiling point diagram is
a) not effected by pressure
b) affected by pressure
c) a plot of temperature $v s$ liquid composition
d) a plot of temperature vs vapour composition.
ii) Raoult's law is applicable to
a) ideals solutions
b) real solutions
c) the mixture of water and alcohol
d) non-ideal gases.
a) partial pressure of a component over a solution is proportional to its mole fraction in the liquid
b) partial pressure of a component over a solution is proportional to its mole fraction in the vapour
c) vapor pressure is equal to the product of the mole fraction and total pressure
d) partial pressure is equal to the product of the mole fraction and total pressure.
iv) In azeotropic mixture, the equilibrium vapor composition is
a) more than liquid composition
b) less than liquid composition
c) same as liquid composition
d) independent of pressure.
v) Boudary Layer theory relates average mass transfer coefficient (K) with diffusivity (D) as
a) $K \propto D^{0.5}$
b) $K \infty D^{2 / 3}$
c) $K \propto D$
d) $K \infty D^{3}$.
vi) Relative volatility $A B$ stands for
a) $\left(X_{A} / Y_{A}\right) /\left(Y_{B} / X_{B}\right)$
b) $\left(Y_{A} / X_{A}\right) /\left(Y_{B} / X_{B}\right)$
c) $\quad P_{A}^{\text {sat }} / P_{B}^{s a t}$
d) both (b) and (c).
vii) At total reflux condition in a distillation colymn, the number of plates becomes
a) minimum
b) infinite
c) more than that predicted by McCabe-Thiele method
d) less than that predicted by McCabe-Thiele method.
viii) A vapor liquid mixture containing 75% liquid is used as feed for distillation. The value of q is
a) $3 / 4$
b) $1 / 4$
c) $1 / 2$
d) 1 .
ix) Leaching is
a) Gas-liquid mass transfer
b) Gas-solid mass transfer
c) Liquid-liquid mass transfer
d) Solid-liquid mass transfer.
x) For the case of Cracking reaction
$\mathrm{CH}_{4} \varnothing \mathrm{C}+2 \mathrm{H}_{2}, \mathrm{CH}_{4}(\mathrm{~A})$ diffuses to the cracking surface and H_{2} diffuses back. If the fluxes are NA and NB respectively then NA/NA + NB equals to
a) 0
b) 1
c) -1
d) $1 / 2$.

Answer any three of the following.
2. Derive the expression for overall mass transfer coefficient when the system is liquid film controlling.
3. Explain briefly the operating principle of a Packed Tower.
4. Define diffusivity. CH_{4} diffuses at steady state through a tube containing He. At point 1 the partial pressure of CH_{4} is $p_{A}=55 \mathrm{kPa}$ and at point $2,0 \cdot 03 \mathrm{~m}$ apart $p_{A}=15 \mathrm{kPa}$.

The total pressure is $101 \cdot 32 \mathrm{kPa}$ and temperature 298 K . At this temperature and pressure the value of diffusivity is $6.75 \infty 10^{-5} \mathrm{~m}^{2} / \mathrm{S}$.

Calculate the flux of CH_{4} at steady state for equimolar counter diffusion. $2+3$
5. The temperature of air in a room is $40 \cdot 2^{\circ} \mathrm{C}$ and the total pressure is 101.3 kPa . The air contains water vapour with a partial pressure $p A$ is 3.74 kPa . Calculate (i) the humidity, (ii) the saturation humidity and \% humidity, (iii) the \% relative humidity. $\quad 1+2+2$
6. A hot solution containing 5000 kg of $\mathrm{Na}_{2} \mathrm{CO}_{3}$ and water with a concentration of $25 w t \% \mathrm{Na}_{2} \mathrm{CO}_{3}$ is cooled at 293 K and crystals of $\mathrm{Na}_{2} \mathrm{CO}_{3} \cdot 10 \mathrm{H}_{2} \mathrm{O}$ are precipitated. At 293 K , the solubility is 21.5 kg anhydrous $\mathrm{Na}_{2} \mathrm{CO}_{3} / 100$ kg of total water. Calculate the yield of crystals obtained if 5% of the original water in the system evaporates on cooling. 5

7. a) What is murphree plate efficiency of a distillation column?
b) Define NTU and H.T.U. of a distillation column.
c) A liquid feed at its boiling point of $400 \mathrm{~kg}-\mathrm{mol} / \mathrm{h}$ containing $70 \mathrm{~mol} \%$ of benzene (A), $30 \mathrm{~mol} \%$ of toluene (B) and fed to a stripping tower at $101 \cdot 3 \mathrm{kPa}$ pressure. The bottom product flow is to be $60 \mathrm{~kg}-\mathrm{mol} / \mathrm{h}$ contianing only $10 \mathrm{~mol} \%$ of A and rest B. Calculate the kg-mol/h of overhead product, its composition and number of theoretical trays required. The equilibrium data of benzene toluene system is given below :

$\boldsymbol{X}:$	1.000	0.700	0.581	0.411	0.258	0.130	0
$\boldsymbol{Y}:$	1.000	0.900	0.777	0.632	0.456	0.261	0

$$
2+3+10
$$

8. a) What is the basic principle of extraction of solid ? Extraction of solids is sometimes pH dependent. Explain.
b) What is separation factor in an extraction process ? Deduce an expression for kinetics of mass transfer during extraction process.
c) Penicillin is extracted from a fermentation both using isoamylacetate as organic solvent in a continuous counter current cascade extraction unit. The flow rates of organic (l) and aqueous (h) phases are $L=101 / \mathrm{m}$ and $H=100 \mathrm{l} / \mathrm{m}$ respectively. The distribution coefficient of penicillin between organic and aqueous phases at $\mathrm{pH}=3$ is 50 . If the penicillin concentration in the feed stream is $20 \mathrm{~g} / \mathrm{l}$, determine the number of stages required to reduce the penicillin concentration $0 \cdot 1 \mathrm{~g} / 1$ in the effluent of extraction unit. $4+5+6$
9. a) A packed tower is to be designed to absorb SO_{2} from air by scrubbing with water. The entering gas is $20 \% \mathrm{SO}_{2}$ by volume and leaving gas is to contain 0.5% SO_{2} by volume. The entering water SO_{2} free. The water flow is to be twice the minimum. The pure air (on SO_{2} free basis) flow rate is $975 \mathrm{~kg} / \mathrm{hr} . \mathrm{m}^{2}$ at 303 K and 2 atm pressure. The equilibrium data is governed by $y=21.8 x, x \& y$ are in mole fraction units. Compute the number of gas transfer units.
b) Briefly discuss about the different types of plate type towers for absorption process.
10. a) Derive the relation between overall and individual mass transfer coefficient.
b) A mixture of acetone vapour \& air containing 5\% by volume of acetone is to be free of its acetone content by scrubbing it with water in a packed bed absorber. The flow rate of the gas is $700 \mathrm{~m}^{3} / \mathrm{h}$ of acetone-free air measured at NTP and that of water is $1500 \mathrm{~kg} / \mathrm{h}$. The a pressure of 101 kPa . the scrubber absorbs 98% of the acetone. The equilibrium relationship for acetonevapour water system is $Y^{*}=1.68 X$, where Y-kmol of acetone $/ \mathrm{K} \mathrm{mol}$ of dry air \& X-kmol of acetone/Kmol of dry water. Calcutate the mean driving force for absorption $\&$ the mass transfer area if the overall mass transfer coefficient is 0.4 K mol of acetone/m ${ }^{2} \mathrm{~h}$. $7+8$
11. Describe any three unit operations:
$3 \infty 5=15$
a) Ultrafiltration
b) Electrodialysis
c) Pervaporation
d) Reserve osmosis
e) Dialysis.
