	Utech
Name:	A
Roll No.:	To Date of Exercising and Explana
Invigilator's Signature :	

CS/B.Tech (EIE-OLD)/SEM-4/CS-405 (EI)/2013 2013

DATA STRUCTURES & ALGORITHMS

Time Allotted: 3 Hours Full Marks: 70

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

GROUP – A

(Multiple Choice Type Questions)	
----------------------------------	--

			`	•	•			•			
1.	Cho	oose the correct alternatives for the following : $10 \times 1 = 10$									
	i)	Example of a non-linear data structure is									
		a)	array			b)	lis	t			
		c)	graph	-		d)	no	ne of t	these.		
	ii)	In C	langu	age, n	nalloc() re	turns	s		po	inter	
		a)	intege	er		b)	str	uctur	e		
		c)	null			d)	voi	id.			
	iii)	Whi	ch of	the	following	is	the	best	time	for	an
		algorithm ?									
		a)	O (n)		b)	log	\mathfrak{g}_2 (n))		
		c)	O(2 ^r	¹)		d)	0 ((n log	2 n).		

4503 (O) [Turn over

CS/B.Tech (EIE-OLD)/SEM-4/CS-405 (EI)/2013

queue

stack

push

a)

c)

a)

c)

v)

vi)

- a) O(1)
- $O(n \log n)$ c)
- The maximum number of nodes possible in a binary tree of height h is
 - $2^{h} 1$ b) a) 2h - 1
 - $2^{h} + 1$ c) d) none of these.
- viii) In a complete graph, the number of edges with 9 vertices is
 - 18 b) 17 a)
 - d) none of these. c) 19
- What traversal technique lists the nodes of a binary search tree in ascending order?
 - Post-order a) b) In-order
 - Pre-order d) None of these. c)
- When a graph is traversed by visiting in the forward x) direction as long as possible, the traversal is called as first traversal.
 - a) depth b) node
 - breadth d) none of these. c)

GROUP - B

(Short Answer Type Questions)

Answer any three of the following.

- 2. What would be the worst case scenario for bubble sort program? Also confirm that the best case behaviour is O(n).
- 3. Construct an expression tree for the expression $E = (2x + y) * (5a b)^3$.
- 4. Write an algorithm to insert a node in a BST.
- 5. Write the difference between stack and queue and implement the operation of priority queue. 2 + 3
- 6. What is the difference between linked list and an array? How can a polynomial such as $5x^4 3x^2 + 9x 11$ be represented by a linked list? 2+3

GROUP - C

(Long Answer Type Questions)

Answer any *three* of the following.

- $3 \times 15 = 45$
- 7. a) Given an array of n integers, write an algorithm to find the smallest element. Find number of instruction executed by your algorithm. What are the time and space complexities?
 - b) Write an algorithm/program to implement the insert and delete operations of linked list.
 - c) What is Sparse matrix? Explain with example how sparse matrix be represented by a linked list.

$$(2+1+2)+5+(2+3)$$

CS/B.Tech (EIE-OLD)/SEM-4/CS-405 (EI)/2013

- b) Explain with a suitable example the collision resolution scheme using linear probing with open addressing.
- c) Write an algorithm for inserting an element from circular queue. 5+5+5
- 9. a) Describe heap sort and show that its worst case performance is $O(n \log n)$.
 - b) Suppose the following sequences list the nodes of binary tree T in pre-order and in-order respectively:

Pre-order: G, B, Q, A, C, K, F, P, D, E, R, H

In-order : Q, B, K, C, F, A, G, P, E, D, H, R.

Draw the diagram of the tree.

c) Draw a graph with 5 vertices each of degree 4.

(4+4)+4+3

- 10. a) Prove that, for any non-empty binary tree T, if L be the number of leaves and V be the number of nodes of degree 2, then L = V + 1.
 - b) What is tower of Hanoi problem? Write an algorithm to solve it. Also calculate the time of complexity of your algorithm. 5 + (3 + 5 + 2)
- 11. Write short notes on any three of the following:
 - a) Hashing
 - b) Indexed sequential file organization
 - c) Doubly linked list
 - d) Recursion
 - e) Binary tree traversal.